
NASA 

44 
0 
h 

P; 
U 

‘- 1 

.’ * 

CONTRACTOR 

REPORT 

. . 

NASA -- 
F-. I 

CR-7 

FEASIBILITY STUDY OF 
AN EXPLOSIVE GUN 

by John K. Crosby and Stephen P. Gill 

Prepared by 

STANFORD RESEARCH INSTITUTE D 

Menlo Park, Calif. 

for Ames Research Center 
,,,i’ 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION l WASHINGTON, D. C. l APRIL 1967 / 



NASA CR-709 
TECH LIBRARY +FB, NM 

IlllllIIIwllllImIIII#IIl~l~~~~ml oo~7e3e 

FEASIBILITY STUDY OF AN EXPLOSIVE GUN 

By John K. Crosby and Stephen P. Gill 

Distribution of this report is provided in the interest of 
information exchange. Responsibility for the contents 
resides in the author or organization that prepared it. 

Prepared under Contract No. NAS 2-1361 by 
STANFORD RESEARCH INSTITUTE 

Menlo Park, Calif. 

for Ames Research Center 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sole by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price 63.00 





CONTENTS 

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . V 

LISTOFTABLES . . . i......................... vii 

SECTION 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Background. ....................... 1 
1.2 Status at Year's Beginning ................ 2 
1.3 General Outline of Current Year's Work .......... 3 

SECTION 2 EXPERIMENTALSTUDIES . . . . . . . . . . . . . . . . . . . . 5 

2.1 Tube Collapse and Shock Development in a Glass 
Tube Design ...................... 

2.1.1 X-Ray Observations ................ 
2.1.2 Framing Camera Observations ............ 7 
2.1.3 Summary of Collapse and Shock Formation ...... 7 

2.2 Projectile Launch Series With Stopping Piston ...... 13 
2.2.1 Criteria for a Continuous Piston Design ...... 13 
2.2.2 Stopping Piston Launch Shots ........... 15 
2.2.3 High Pressure Coaxial Drivers ........... 23 
2.2.4 Glass Launcher Extension Shots .......... 24 

2.3 Feasibility of a One-Piece Steel Driver-Launcher ..... 25 
2.3.1 Collapse of Pressurized Steel Tubes ........ 27 
2.3.2 All-Steel Gun Firings ............... 29 

2.3.2.1 First Gun ................ 30 
2.3.2.2 Second Gun ................ 

2.4 Low Velocity Explosive Development ............ :: 
2.4.1 Nitromethane ................... 
2.4.2 Baratol ...................... ;78 
2.4.3 PETN-Plaster ................... 38 

2.5 High Speed Driver Development .............. 39 
2.5.1 Plane Geometry Shots ............... 
2.5.2 Conical Geometry Shots .............. zo9 

2.6 Shaped Charge Drivers .................. 41 
2.6.1 Previous Work at BRL ............... 41 
2.6.2 Work Performed at SRI ............... 44 

SECTION 3 NUMERICALGUNDESIGN . . . . . . . . . . . . . . . . . . . . 47 

3.1 Double Shock Calculations ................ 
3.2 Control of Second Shock Arrival ............. 
3.3 Accelerating Piston Calculation ............. 49 
3.4 Accelerating Piston Design ................ 51 
3.5 Stop-Start Gun Design .................. 54 

iii 

P : i 
- 



SECTION 4 THEOREZICAL CA.LCUlXTIONS . . . . . . . . . . . . . . . . . . 57 

4.1 HeliumGas ........................ 
4.2 Hugoniot Calculations .................. 
4.3 Boundary Layer Calculations ............... 66 
4.4 Radiation Effects .................... 74 
4.5 Flow Computations .................... 76 
4.6 Jet Calculations .................... 81 

4.6.1 Implosion Velocity Prediction ........... 81 
4.6.2 Jetting ...................... 82 

SECTION 5 SUMMARY AND RECOMMENDATIONS ................. 85 

5.1 Summary ......................... 85 
5.2 Recommendations for Future Work ............. 86 

APPENDIX A CALCULATIONS PERFORMED FOR THE NASA-AMES 4"-1" 
DEFORMABLE-PISTOT~ LIGHT GAS CruN . . . . . . . . . . . . . . . . . . . . 89 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

iv 



ILLUSTRATIONS 

Fig. 1.1 Schematic of Explosive Accelerator . . . . . . . . . . . . . . 2 

Fig. 2.1 Copper-Wrapped Glass Tube Being Imploded by Nitromethane, 
Shot10,929.......................... 6 

Fig. 2.2 X Rays of Shock and Tube Interactions . . . . . . . . . . . . . 8 

Fig. 2.3 Growth of Shocked Helium Slug Showing Interaction of Helium 
Shock With Liner Tube and Explosive . . . . . . . . . . . . . . 9 

Fig. 2.4 Origin of Sharp Wall Angle Change in Long X-Ray Shots . . . . 12 

Fig. 2.5 Growth of Shocked Helium Slug vs. Detonation Front Travel . . . 13 

Fig. 2.6 Inner Tube Expansion vs. Detonation Front Travel . . . . . . . 14 

Fig. 2.7 Design Chart Relating Initial Pressure, Piston Velocity, 
and Peak Reflected Pressure . . . . . . . . . . . . . . . . . . 16 

Fig. 2.8 Shot Design for Stopping Piston Launcher Shots . . . . . . . . 17 

Fig. 2.9 Calculated Pressures and Velocities and Comparison With 
Experimental Velocities . . . . . . . . . . . . . . . . . . . . 20 

Fig. 2.10 X Rays and Impact Crater From Shot With 1.8-Meter Flight 
Chamber, Shot 11,489 . . . . . . . . . . . . . . . . . . . . . 21 

Fig. 2.11 Record of Projectile Launch From a Glass Launch Tube, 
shot 1~,685.......................... 26 

Fig. 2.12 Pressurized Steel Tube Closing Experiments . . . . . . . . . . 28 

Fig. 2.13 Steel Tubes Closing Against Reflected Shock Pressures . . . . 31 

Fig. 2.14 Calculated Behavior of First Steel Gun Shot . . . . . . . . . 32 

Fig. 2.15 Calculated Behavior of Second Steel Gun Shot . . . . . . . . . 34 

Fig. 2.16 Second Steel Gun Ready to Fire . . . . . . . . . . . . . . . . 35 

Fig. 2.17 Possible Projectile Trajectories for Second Steel Gun Shot . . 36 

Fig. 2.18 Coaxial Conical High-Speed Driver . . . . . . . . . . . . . . . 40 

Fig. 2.19 Shock in 21.6-bar Helium Driven by 15 mm/psec Driver, 
shot 1.1.,626.......................... 42 

Fig. 2.20 Design of Shaped Charge for Piston Formation . . . . . . . . . 43 

V 



Fig. 2.21 Hardware for Shaped Charge Experiments ............. 46 

Fig. 3.1 Calculated Behavior of Double Shock System ........... 48 

Fig. 3.2 Calculated Acceleration of a Projectile by an Accelerating 
Piston............................. 50 

Fig. 3.3 Geometry of Shell Design for a Constantly Accelerating Piston . 52 

Fig. 3.4 Calculated Operation of a Stop-Start Gun . . . . . . . . . . . 55 

Fig. 4.1 Helium Gas Gun Equilibrium Temperatures vs. Piston Velocity . . 67 

Fig. 4.2 Helium Gas Gun Equilibrium Density Ratios vs. Piston Velocity . 68 

Fig. 4.3 Helium Gas Gun Pressure vs. Piston Velocity .......... 68 

Fig. 4.4 Helium Gas Gun Shock Velocity vs. Piston Velocity ....... 69 

Fig. 4.5 Equilibrium Ionization in Helium vs. Piston Velocity ...... 69 

Fig. 4.6 Helium Gas Gun Equilibrium Density Ratio vs. Ambient Pressure * 70 

Fig. 4.7 Boundary Layer Growth Behind a Shock Front in Material 
Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

Fig. 4.8 Coefficients for the Gurney Equation for Imploding Coaxial 
Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

Fig. 4.9 Jetting Process in Coordinates Moving With Detonation Front . . 83 

Fig. A.1 Schematic Diagram and Pertinent Dimensions of the NASA-Ames 
4"-1" Deformable-Piston Light Gas Gun . . . . . . . . . . . . . 91 

Fig. A.2 Piston Deformation Process . . . . . . . . . . . . . . . . . . . 93 

vi 



TABLES 

Table 2.1 Summary of Shots to Observe Coaxial Driver Operation . . . . . 10 

Table 2.2 Projectile Launching Shots ................... 19 

Table 2.3 High Pressure Projectile Launch Attempts ............ 23 

Table 2.4 Pressurized Steel Tube Closing Experiments . . . . . . . . . . . 27 

Table 2.5 Steel Tube Closing Experiments vs. Reflected Shock Pressures . . 29 

Table 2.6 Failure Thickness Tests With Nitromethane . . . . . . . . . . . 38 

Table 2.7 Failure Diameter Tests With PETN-Duroc ............. 39 

Table 2.8 Two-Dimensional High Phase Velocity Shots ........... 40 

Table 2.9 Shaped Charge Driver Shots .................. 45 

Table 4.1 Boundary Layer Thickness .................... 73 

Table 4.2 Maximum Ratio of Boundary Layer Thickness to Driver Tube 
Radius for a Standard Experimental Configuration . . . . . . . . 73 

Table 4.3 Laminar Heat Transfer Rate . . . . . . . . . . . . . . . . . . . 74 

.Table 4.4 Maximum Ratio of Power Lost by Thermal Conduction to Power 
Supplied by Piston for a Standard Experimental Configuration . . 75 

Table 4.5 Blackbody Radiative Heat Transfer Rate . . . . . . . . . . . . . 75 

Table 4.6 Maximum Ratio of Power Lost by Thermal Radiation to Power 
Supplied by Piston for a Standard Experimental Configuration . . 76 

vii 



SECTION 1 

INTRODUCTION 

1.1 BACKGROUND 

Laboratory attainment of relative velocities of macroscopic particles 

comparable to those encountered in space flight has proved to be extremely’ 

difficult. During the past decade numerous laboratories have tried a 

variety of schemes, as evidenced by the substantial literature reported in 

Proceedings of the Hypervelocity Impact Symposia. At the present time the 

most useful devices are the light gas guns, capable of accelerating models 

of controlled shape to velocities of approximately 10 km/set, and explo- 

sive shaped-charge arrangements which produce higher velocities, up to 

21 km/set, but at the expense of lack of good control of particle shape 

and mass. 

It is widely conceded that major improvements in the performance of 

breech-loaded devices such as the standard light gas gun are not to be ex- 

pected because of the fundamental limitation that the gas-must expend some 
of its own internal energy to accelerate itself in order to maintain pres- 

sure at the base of the projectile. This limitation can only be overcome 

by increasing the temperature of the gas while maintaining unchanged pres- 

sure. As yet, no simple means exists for substantially increasing temper- 

ature. There is also evidence that there are optimum gas temperatures 

beyond which the final velocity actually decreases, presumably owing to 

erosion of the barrel and projectile and to radiative losses.’ 

It is clear that important increases in projectile velocity can be 

achieved only by continuing to supply energy to the gas as the projectile 

accelerates. That this procedure is effective is shown by the substantial 

increase in performance produced by the modification developed at NASA- 

Ames in the “accelerated reservoir light gas gun. 912 

One possibility for combining the advantages of light gas guns with 

those of explosive arrangements is to use the explosive to drive a piston 

which acts essentially as the pump piston of a “constant-velocity reservoir” 

light gas gun. In this case, projectile velocity is increased by the 



amount of piston velocity and may be substantially enhanced by the gas 

heating that results from very strong shock compression. 

Viewed another way, if a piston of substantial mass can be made to 

move at high velocity by explosive acceleration, and if through a con- 

trolled collision part of its energy and momentum can be transferred to 

a projectile of controlled shape while maintaining projectile accelera- 

tion within acceptable bounds, then a very high-performance launcher 

results. The projectile velocity is a factor of 1 to 2 or more greater 

than the piston velocity, depending on energy losses in the system and 

the relative mass of gas confined between piston and projectile. In 

such a system, the gas serves primarily as a buffer to reduce projectile 

acceleration; energy is continually fed into it by the advancing piston 

and is extracted from it by the projectile. 

This report describes the results of the second year's work 

(November 1964 - April 1966) on a study of the feasibility of an explo- 

sive system as a high-performance launcher. 

1.2 STATUS AT YEAH'S BEGINNING 

At the completion of the first year's work, the system depicted in 

Fig. 1.1 had been shown to be feasible in the sense that explosively 

collapsed glass tubes had been proved to be capable of driving strong 

shocks into pressurized helium. The shock velocities (8 to 10 mm/psec) 

and the distance of travel beyond the portion of the tube surrounded by 

explosive suggested that a piston of significant mass was formed during 

tube collapse. In addition, computer runs had been made with a simple 

COLLAPSE OF 
EXPLOSIVE CYLINDER 
COAXIAL WITH CENTRAL TUBE 

BEFORE 
DETONATION 

PRESSURE MOVING 
TO RIGHT AT DETON- 
ATION VELOCITY 

FIG.l.l SCHEMATlC OF EXPLOSIVE ACCELERATOR 

2 



one-dimensional, artificial viscosity code which gave considerable in- 

sight into the relationships between piston mass, gas mass, projectile 

mass, and pressure and velocity histories. 

1.3 GENERAL OUTLINE OF CURRENT YEAR’S WORK 

When experiments were made to investigate the behavior of a collapsing 

glass tube, it was quickly learned that any jet formed by this collapse is 

of minor importance in the operation of a high-pressure gun and that it is 

the collapse itself, moving with a velocity equal to the detonation ve- 

locity, that is the effective piston. This discovery made the theoretical 

analysis of the gun design much simpler, and as the theory of operation was 

studied more thoroughly, the.components required for a gun with near- 

optimum performance began to be made clear: 

1. Low detonation velocity in the first stages to allow the 
use of a short, high-pressure helium reservoir. 

2. A transition section around the original projectile 
position to allow containment of high pressures during 
the low-velocity stages of projectile acceleration. 

3. Detonation velocities increasing gradually to very high 
values as the acceleration proceeds. 

The experimental work performed on these three problems is discussed in 

Section 2. ‘Also described there is work done on a constant velocity- 

constant wall-thickness gun using thin-walled, high-strength steel tubing 

which offered promise of eliminating the transition section requirement. 

Finally, investigations of the feasibility of using a shaped charge jet 

as a massive, high-velocity piston are described. 

The artificial viscosity computer code developed during the project 

made possible nonexperimental investigation of many different modes of 

gun operation which could be used to increase efficiency. These studies 

are described in Section 3, along with a theoretical design of an explo- 

sive system which will provide a piston with constant acceleration. 

Section 4 describes the theoretical work done on the gas dynamics of 

the gun, including studies of ionization, radiative cooling, and boundary 

layer effects. A short theoretical study of the collapse process. which 

yielded an estimate of the jet mass is also included. Finally, the de- 

velopment and operation of the computer code are described, and the 

extension of this code to allow calculations of the behavior of the Ames 
accelerating reservoir light gas gun is covered. 

3 





SECTION 2 

EXPERIMENTAL, S'IUDIES 

2.1 TUBE COLLAPSE AND SHOCK DEVELOPMENT 
IN A GLASS TUBE DESIGN 

The shock velocities observed in shots fired during the first year’s 

work were higher than those that would be expected from a piston moving 

at detonation velocity. This suggested that some sort of jet was being 

formed during the collapse of the tube and that this jet moved out ahead 

of the detonation front. If any but a very simple theory of operation 

were to be devised, it was essential to know as much as possible about 

this piston. Because attempts to observe the piston after it had left 

the explosive were largely unsuccessful last year, it was decided to at- 

tempt observation during the process of formation, in the hope that there 

might be early stages during which it is more visible than later, when it 

has had opportunity to disperse. In addition, pictures of the collapse 

process would yield information on the wall velocity, which could be used 

to predict the jet mass theoretically. 

Another facet of the operation of a glass-lined design which had not 

been studied during the first year’s work was the reaction of the glass 

tube and the surrounding explosive to sudden application of kilobar pres- 

sures upon arrival of the helium shock. It was expected that the tube 

would fracture and begin to expand, but the extent of this expansion and 

its effect on the detonation front when it arrived were unknown. 

The instruments used to study these effects were the flash X-ray 

unit, which gave accurate measurements of the tube expansion and collapse 

velocity, and the framing camera, which showed the effects of tube breakup 

and expansion on detonation and also gave an accurate measure of the 

growth of the shocked gas slug as detonation progressed along the tube. 

2.1.1 X-RAY OBSERVATIONS 

Taking flash X-ray photographs of explosive events is always diffi- 

cult since, for good detail, the film cassette should be as close as 
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possible to the shot and is therefore vulnerable. The problem is most 

acute when events in the explosive itself are to be observed, as in this 

case, since only light shielding (up to a maximum of % inch of aluminum) 

can then be used between explosive and film. 

After several attempts, a technique was devised which usually allowed 

recovery of the film after the shot. This technique reduced the hazard to 

the film by limiting the area observed by apertures defined by steel plates 

placed so as to successively attenuate the shock and blast on their way to 

the cassette holder. A %-inch aluminum plate on the face of the holder 

stopped the fragments and usually bent enough to absorb the blast without 

damaging the cassette. 

Because of the thickness of explosive penetrated by the X rays, and 

the need to use % inch of aluminum, the pictures obtained by this method 

are not very clear. Figure 2.1 is one of the best records obtained from 

early shots in which nitromethane was used. In the original, a second 

shock can be seen radiating from the collapsed stem of glass. This par 

titular shot had a 0.003-inch 

copper foil wrapped around the 

Pyrex glass tube to make it more 

visible. No jet or other ma- 

terial is visible in the tube 

ahead of the detonation front. 

The mass ratio of explosive 

charge to glass tube used in 

these early nitromethane shots 

ranged from 2O:l to 40:1, de- 

pending on the characteristics 

of the glass tube. Since 

charge-to-mass ratios over 1O:l 

had been shown in other studies 

to yield very little additional 

mass velocity, the next series 

of shots investigating the glass 

driver used a charge reduced to 

this level. This made the prob- 

lems of X-ray penetration and 

film protection much less severe 
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and allowed the recording of much clearer pictures of a larger area 

of the shot. 

Figure 2.2 shows some of the X rays obtained from this series. 

The width of the strip observed through the blast shields could be as 

great as an inch before pressure printing on the film became serious. 

In the beginning (e.g., Shot No. 11,191) this strip was centered on the 

liner tube so that the expansion of both sides couldbeobserved. Some 

of the later shots (e.g., Shot No. 11,288) covered only one side of the 
liner tube and an outside surface of the explosive in order to see how 

much this surface was affected by the liner expansion. 

2.1.2 FRAMING CAMERA OBSERVATIONS 

Three shots using nitromethane in an all-glass system were fired in 

frost of the framing camera. The part of the shot observed by the camera 

was about 6 inches long and was chosen farther along the tube for each 

successive shot. Figure 2.3 shows sample frames from each of the experi- 

ments. Back lighting and a system of crossed grid lines made it possible 

to observe the shock in helium, the shock induced in the nitromethane, 

and the breakup of the inner and outer glass tubes. 

2.1.3 SUMMARY OF COLLAPSE AND SHOCK FORMATION 

Table 2.1 summarizes all the shots fired during this study; the mea- 

surements are given as read from the film without any of the corrections 

to be discussed below. The following conclusions are drawn from these 

shots: 

1. The expansion of the outside of the explosive, even in 
these shots with little or no confinement, is low 
enough that it should not interfere with the progress 
of detonation. 

2. The angle of the collapse cone is high enough that 
phase velocities substantially higher than the normal 
detonation velocities can be used before closure of the 
tube will cover an inordinate length. 

3. The glass jet, if present, has a mass too low to be 
detected by X ray or framing cameras. 



DETONATION 
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Table 2. 1 

SUMMARY OF SHOTS TO OBSERVE COAXIAL DRIVER OPERATION 

w 
0 

POSITION AT WHICH 
DETONATION FRONT OUTSIDE OF 

SHOT POSITION APP;;;;;I;;oCK RATIO OF TUBE DIAM. EXPLOSIVE BEGINS MAXIMUM OBSERVED 

NO. (cm from (cm from deto- AT DETONATION FRONT TO EXPAND EXPLOSIVE EXPANSION REMARKS 

initiation point) nation front) TO NORMAL DIAM. (cm from deto- RATIO 
nation front) 

10,988 

11,142 

11,143 

11,144 

11,191 

11,192 

11,257 
11,258 

11,274 

11,275 

11,288 

15.6 

16.7 
19.3 
29.8 
33.8 
40.4 
45.5 
47.2 

59.4 

11.5 
21.6 

47.2 

72.6 

79.6 

5.2 1.2 _- __ 0.003” copper sheath 
on liner tube; 
X ray; Nitromethane 

5.7 f 0.2 1.13 f 0.01 _- -_ Framing camera 
7.3 f 0.2 1.16 f 0.01 __ __ Nitromethane 

12.9 f 0.2 1.19 -k 0.01 ?P 1.01 
1.04 

Framing camera 
Nitromethane 

16.7 f 0.2 1”o:Z 1.08 Framing camera 
1.10 Nitromethane 

10.8 f 1.0 1.35 f 0.02 -- __ x ray 
c-3 

15.0 f 3.0 1.6 f 0.1 8.0 f 1.0 1.08 x ray 
c-3 

2.8 f 1.0 1.10 f 0.02 _- -- &:y, 
9.1 f 1.0 1.10 f 0.05 -- -_ 

kpaYB 
8.5 f 1.0 1.15 f 0.05 -- -- x ray 

Lamp B 
-- 1.45 f 0.05 _a _- 

k;;yB 
14.5 f 2.5 1.55 f 0.1 8.5 1.12 



4. When the separation of the apparent shock front from the 
detonation front is plotted as a function of the length 
of run of the detonation, a very confused plot results. 
Although the framing camera records of the nitromethane 
shots and the two shortest Comp B X-ray shots plot up as 
a nice curve following the ideal gas line fairly closely, 
all the X-ray shots in which the detonation has gone more 
than 45 cm give unreasonably low values for the shock 
separation. To explain this discrepancy, it is suggested 
that the turning point noted on these shots is not at the 
helium shock front itself, but at the place where the 
rarefaction produced by the reflection of the explosive 
shock (induced by the helium shock) at the explosive free 
surface first reaches the liner. 

Th e geometry of this situation for one of the Comp B shots 
is shown in Fig. 2.4. The helium shock position shown is 
calculated assuming. a perfect gas and a detonation ve- 
locity in Comp B of 7.9 mm/psec. The shock velocity in 
Comp B is assumed to be the sonic velocity, since it is 
quite a weak shock. Using these velocities and the CompB 
thickness shown, the calculated position of the second 
turning of the glass liner is 12 cm behind the real shock 
front. 

Figure 2.5 shows the plot of shocked gas thickness versus 
detonation front travel. When the four low points beyond 
45 cm are arbitrarily raised by 12 cm, the figure begins 
to look much more reasonable. For the two C-3 points, 
12 cm may not be the correct figure. However, the deto- 
nation velocity is somewhat lower, which would tend to 
lower the figure, and the sonic velocity (although un- 
measured) is also probably lower, which would tend to 
raise the figure. Thus, 12 cm is probably a good first 
approximation for these shots. 

When corrected in this way the curves in Fig. 2.5 suggest 
that, at least initially, the shocked helium region 
thickens faster than would be predicted from perfect gas 
theory. This is probably due to a glass jet of low mass. 
Although the experimental uncertainties of the later 
shots are too large to draw any definite conclusions, it 
appears that this jet effect is leveling out after adding 
about 3 to 4 cm to the apparent shocked helium thickness, 
and that the late behavior is thus essentially that of a 
gun with a piston moving at detonation velocity. 
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35 

-+ NITROMETHANE, LIQUID EXPLOSIVE 
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DETONATION FRONT TRAVEL -cm OA-WI,,-16 

FIG. 2.5 GROWTH OF SHOCKED HELIUM SLUG 
vs. DETONATION FRONT TRAVEL 

5. The diameter of the liner increases rapidly, by 10 to 
20%, after the shock passes and then remains essentially 
constant until about the time that the rarefaction wave 
comes in from the outside. This is shown in Fig. 2.6. 
Although the expansion is approaching serious levels in 
some of the longer shots, the addition of steel confine- 
ment on the outside of the explosive will reduce this 
significantly and allow much longer charges to be fired 
if necessary. 

2.2 PROJECTILE LAUNCH SERIES WITH STOPPING PISTON 

2.2.1 CRITERIA FOR A CONTINUOUS PISTON DESIGN 

During the first year’s work on this project, flow calculations were 

performed to investigate the behavior of designs with a variety of char- 

acteristics. The parameters varied included piston and.projectile mass, 

piston velocity, initial gas pressure, and initial gas reservoir length. 

The calculated cases closest to feasible designs were those in which a 

heavy piston was assumed so that the piston velocity was approximately 

constant, as it is in a continuously driven system. It was shown that 

13 
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such a piston will accelerate a projectile by driving into the gas a shock 

which will reflect off the projectile to produce a pressure spike, and 

that this shock will be reflected again off the piston and then off the 

projectile, producing another pressure spike before the projectile reaches 

or exceeds the piston velocity. 

When performance is limited by the strength of the projectile, the 

optimum design will be one in which these two spikes have equal peak 

pressures. By varying the gas pressure and gas reservoir length, it was 

discovered empirically that the condition for this optimum is that the 

mass of gas be about equal to the mass of the projectile. The magnitude 

of the peak pressure is determined by the piston velocity and the initial 

gas pressure, so that the first-order design of a gun becomes straight- 

forward once the projectile mass and strength have been assumed: 

1. Determine projectile strength and mass per unit area. 

2. Choose a driving explosive and determine its detonation 
velocity. 
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3. Read, from Fig. 2.7, the maximum initial gas pressure 
allowable to give a peak reflected pressure below the 
projectile strength, using the line for the detonation 
velocity of the explosive to- be used. 

4. For the initial pressure determined in 3, determine 
the gas reservoir length required to give a gas mass 
equal to the projectile mass. Values for a projectile 
mass of 0.5 gm/cm* are given in Fig. 2.7. 

We wished to fire a Lexan projectile with a mass of 0.5 gm/cm* and 

an expected strength of about 5 kbar. Nitromethane (detonation velocity 

6.35 mm/psec) was chosen as the explosive; this led to a design with 

10 atm initial pressure and 306 cm reservoir length. While such a de- 

sign could be fired, the excessive explosive length posed some problems 

and it was decided to try a different system-a“stopping piston” design- 

for the first series of shots. 

2.2.2 STOPPING PISTON LAUNCH SHOTS 

If the explosive used to collapse the tube forming the helium reser- 

voir does not cover the entire length of the reservoir, the piston formed 

by the collapse can be made to stop some distance from the projectile. 

In this case, a rarefaction wave will be created at the stopped piston 

and will propagate into the shocked gas, reducing the pressure and par- 

ticle velocity. If the piston is stopped soon enough, this rarefaction 

will reach and attenuate the shock front itself, so that the peak pres- 

sure upon reflection from the projectile will also be reduced. In this 

way, a high initial gas pressure can be used in a short reservoir, so 

that enough gas is present to act as a buffer without having excessive 

pressure on the projectile. 

The shot design for the first series of experiments to launch a 

projectile is shown in Fig. 2.8. The part of the helium reservoir sur- 

rounded by explosive was 50 cm long and consisted of a g-mm-ID glass tube 

surrounded by the nitromethane. The remainder of the reservoir consisted 

of a 98-cm-long, g-mm-ID, steel shock tube section. The entire reservoir 

was initially pressurized with helium to 21.6 bars. Surrounding the 

glass liner was a steel cylinder which acted as a container for the 

nitromethane. 

The nitromethane was initiated at one end, and the detonation col- 

lapsed the glass liner to form a piston moving at the detonation 
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velocity-6.3 mm/psec-driving a shock into the helium ahead of it. At 

the end of the explosive section the collapsing liner stopped while the 

helium shock continued to propagate through the shock tube section toward 

the projectile. As mentioned earlier, it is possible that a cloud of 

glass particles stayed slightly ahead of the actual liner collapse point. 

This glass cloud might have continued to follow the driver gas into the 

shock tube section and act like a piston. 

The driver section was mated to the launch tube by a convergent steel 

section, 2 cm long, which matched the 9-mm inside diameter of the shock 

tube section to the 6-mm inside diameter of the launch tube and sealed 

against the projectile. The projectile was a machined Zelux cylinder, 

6 mm in diameter, 3.33 mm long, with a 22.9-mm-diameter by 0.13-mm-thick 

flange at the reservoir end which sealed the high-pressure reservoir 

section from the evacuated launch tube. The launch tubes were precision- 

bored and -honed 6.0-mm-ID tubes of lengths ranging from 10 to 60 cm. 

Attached to the end of the launch tube was a thin-walled, 3-inch-diameter, 

Plexiglas tube through which flash X-ray exposures or framing camera 

pictures could be made. The end of the Plexiglas target chamber was 

sealed by a steel target plate for evaluation of impact cratering. 

In addition to the X-ray or framing camera instrumentation, small 

PZT gages and electrical break screens proved valuable in shot analysis 

and as backup velocity measurement devices. Two PZT gage assemblies were 

attached to the shock tube section at stations 5 cm and 10 cm from the 

projectile. These gages measured the time of arrival of the helium shock 

by sensing the pulse in the steel tube wall induced by the shock, and 

their output was displayed and photographed on oscilloscopes. 

The break screens were thin paper disks with a conductive grid of 

lines silk-screened on them. Each shot used two screens positioned near 

the beginning and end of the target chamber. The pulses from these screens 

were used to trigger the double-flash X-ray unit and the time between them 

was displayed on a I-MC counter and an oscilloscope. 

Table 2.2 summarizes the eight shots fired in this series. The pri- 

mary variable parameter for the series was launch tube length. The lengths 

were chosen to obtain information about the strength and timing of the 

various possible pressure pulses. These choices were based on the results 

of the calculations of Cases 2-l and 2-2 performed last year.3 As shown 
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Table 2.2 

PROJECTILE LAUNCHING SHOTS 

SHOT 
NO. 

HELIUY DRIVER LAUNCH 
RESERVOIR SECTIOW TUBE PAO.IECT’ILE 

Lt%YTH “ET” “E3” 
VELOCITY 
(dpsec 1 

INSTRUYENTATION REUARKS 

11,390 150 50 

11,399 150 50 
11,438 150 50 
11,444 150 50 
11,445 300 50 

11,489 150 50 

11,684 150 50 

11,685 150 50 

10 -- X-ray and break Timing wrong 
SCl-et." 

10 3.0 f 0.1 x-ray 
20 3.8 f 0.1 x-ray 
40 4.0.f 0.1 X-ray 
10 1.6 f 0.1 X-ray and break 

SClS?lZ” 
20 3.73kO.02 Time-of-arrival 

pm and X-ray 
Gas shock v,elocity 
6.2 f 0.2 nmdpsec, 
1.8 meter target chamber 

60 4.6 f 0.2 Framing csmera Last 20 cm of launcher 
was glass tube 

60 4.6 f 0.1 Fryi+fi camera Gas shock velocity 
6.9 f 0.2 nm/p.ssc. 
Last 20 cm of launcher 
was glass tube 

in Fig. 2.9, a length of 10 cm allows time for only the first shock- 

projectile interaction before the projectile leaves the launch tube. 

Increasing the length to 20 cm allows time for this first reflection and 

for the interaction with the shock reflected from the piston, provided 

the piston mass is of the order of 4 g/cm2. The 40-cm-long launch tube 

allows time for the first and second projectile-gas shock interactions, 

even if the piston mass is only 0.4 g/cm2. An estimation of the strength 

of the second reflected gas shock, and hence the massiveness of the glass 

piston, is possible by comparing the experimental launch velocities with 

those predicted by calculation. 

Two launchings were performed with lo-cm launch tubes. Because of a 
timing error, the first attempt (Shot No. 11,398) resulted in only one 

picture of the projectile. The record allowed the timing to be corrected, 

so that Shot No.. 11,399 obtained two pictures showing a projectile veloc- 

ity of 3.0 mm/psec. 

The two shots with 20-cm launch tubes gave projectile velocities of 

about 3.8 mm/pet. The second of these two shots was fired into a target 
chamber 1.8 meters long with X-ray exposure positions near the muzzle and 
near the target plate. The purpose of the shot was to determine if the 

projectile had broken, by allowing it enough flight time to come apart. 
The radiographs of this shot, shown in Fig. 2.10(a), indicate that the 

projectile had rotated between flashes but had not come apart. 
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Confirmation that the projectile was intact appears in Fig. 2.10(b), a 

photograph of the single impact crater on the target after the 1.83-meter 

projectile flight. The projectile velocity for the shot was 3.73 f 0.02 mm/ 

psec- in very good agreement with Shot NO. 11,438. The installation of 

PZT gages on the shot permitted measurement of the helium driver shock 

velocity immediately before its first reflection from the projectile. The 

incident shock velocity aas 6.2 f 0.2 mm/psec, corresponding to a peak 

pressure on the projectile of 5.5 knar. 

To determine the limits of performance to be expected of such a design, 

three ‘shots with longer launch tubes were fired. In the first of these with 

a 40-cm launch tube, the projectile velocity was 4.0 f. 0.1 mm/psec. The 

two other long launcher shots used precision- bore glass tubing for the last 

20 cm of their 60-cm launchers and gave projectile velocities of 4.6 mm/psec. 

These two shots are discussed in more detail in the next section. 

Shot No. 11,445 was performed to determine the effect of increased 

driver gas mass on projectile launch velocity. The helium reservoir length 

was 300 cm, including the 50-cm coaxial explosive section and the 2-cm 

adapter section. The projectile velocity for the shot was found to be 

1.0 f 0.1 mm/psec, indicating that tbe rarefaction from the stopped 

piston had definitely caught up with and attenuated the shock front. 

The projectile velocities of the experiments are plotted in Fig. 2.9(b) 

as a function of launch tube length. Included in the graph are the veloc- 

ity versus launch-distance curves predicted by Cases 2-1 and 2-2 of the 

early computer run mentioned above. In addition, a curve has been included 

based on a recent calculation duplicating the experimental conditions as 

closely as possible. This run included the diameter change just in front 

of the projectile and approximated the real behavior of the stopping piston. 

The piston was driven at a constant velocity for 50 cm; its mass was then 

reduced to 0.005 gm and it was allowed to react to the gas pressure by 

slowing down, stopping, and moving backwards in a way similar to the 

behavior of gas in an open-ended tube. In the calculation, the piston 

coasted only about 1.5 cm beyond the point where its mass was reduced 

and then began moving backwards. The rarefaction wave produced by this 

reversal caught up with the shock front about 25 cm from the projectile 

and began to attenuate the shock. Upon arrival at the projectile, the 

shock particle velocity had been reduced from 6.35 mm/psec to about 
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5.5 mm/psec, corresponding to a shock velocity reduction from8.4 mm/psec 

to 7.3 mm/fLsec. 

The experimental projectile velocities are all lower than the calcu- 

lated values, especially for the shorter launch tube lengths. Also, the 

shock velocity measuredinShot No. 11,489 was6.25 mm/psec, which is lower 

than the calculated value of 7.3 mm/psec; this probably accounts for most 

of the reduction of projectile velocity. The reason for the reduction in 

shock velocity is not known, but the timing of the interaction of the shock 

and the rarefaction is quite critical, and the real gas in the tube (helium 

with air impurities and ablation products from the tube walls) may behave 

in a way quite different from pure helium. 

2.2.3 HIGH PRESSURE COAXIAL DRIVERS 

In an effort to subject the projectile to higher pressures and thus 

to determine its strength limitations, four shots (summarized in Table 2.3) 

were fired in which the explosive extended over substantially the entire 

length of the helium reservoir. Two of these shots used a plastic explo- 

sive, C-3, and the other two a cast explosive, Comp B. 

Table 2.3 

HIGH PRESSURE PROJECTILE LAUNCH AlTEMPTS 

SHOT 
NO. 

11,504 

11) 505 

11,572 

11,609 

HELIUM 
RESERVOIR 

135 

135 

65 

65 

DRIVER 
SECTION 
LMGTR 

(cm) 

120 

120 

50 

50 

EXPLOSIVE 

c-3 

C-3 

OmpB 

CcnpB 

HELIlM 1 PRESSURE 
(bars) 

21.6 

21.6 

11.4 Ekdce up 

Tim-of-arrival 
PZT and X ray 

Time-of-arrival 
PZT and X .ray 

Tim-of-arrival 
PZT and X ray 

Tim-of-arrival 
PZT and X ray 

Qtmetim failed 
halfway dam 

~tg-m~~failed 
a 

Ges shock velocity 
10.2 f 0.4 rrm/ccaec 

Gss shock velocity 
10.4 f 0.9 mq/pBec 

The two C-3 shots used a coaxial driver system consisting of a 

120-cm long glass tube, 9 mm ID and 11 mm OD, surrounded by explosive 

(with a C/M of 10) confined by a steel tube with l/8-inch-thick walls. 

The explosive driver was followed by a 13.0-cm-long steel shock tube 

section, used primarily for plumbing connections and for PZT gage mount- 

ing, and a 2.0-cm-long chamberage section. The lack of any evidence of 

23 



.-.. ,,.. - 

the projectile in flash X-ray exposures indicates that although the target 

plate showed an impact mark, the launching was later and slower than ex- 

pected. The gages gave only anomalous early signals. Examination of the 

shot after the firing indicated that detonation in the C-3 did not propa- 

gate more than about 60 cm down the driver. Since the design is probably 

quite close to the explosive ‘s failure diameter even when undisturbed, it 

is possible that the disturbance caused by the precompression of the C-3 

explosive by the helium shock was enough to cause detonation failure. 

The two Comp B shots, Nos. 11,572 and 11,609, were the same as the 

C-3 shots except that the driver length was reduced to 50 cm. 

The first shot, No. 11,572, had a 21.6-bar helium initial pressure 

in the reservoir; ignoring attenuation in the shock tube section, the gas 

shock should have produced a peak reflected pressure of about 16.8 kbar. 

The second shot, No. 11,609, had a 11.4-bar helium initial pressure and 

should have produced about 8.9-kbar peak reflected pressure. The amount 

of helium in these shots was not sufficient to satisfy the condition that 

the mass of gas equals projectile mass. This disparity would normally 

result in a destructively large pressure when the shock arrives at the 

projectile the second time, after reflection from the piston. However, 

the launcher was so short in these shots that the projectile was expected 

to be out before the second arrival. 

Both shots apparently destroyed the projectile during launch. The 

high-pressure shot had a measured gas shock velocity of 10.2 mm/psec, 

which would produce a reflected pressure of 15.9 kbar, and this may have 

been high enough to destroy the projectile. However, the low-pressure 

shot may have destroyed its projectile because the acceleration was low 

enough that the projectile stayed too long in the launch tube and was 

overtaken by the large second shock. 

2.2.4 GLASS LAUNCHER EXTENSION SHOTS 

The two shots with glass extensions on the launch tube were fired 

as the first step in developing a design in which the driving piston can 

be made to continue on past the original projectile position and follow 

it down the launch tube. Such a design will enable programming the later 

piston velocity by the use of explosives of increasing detonation velocities, 

to collapse the glass launch tube after the projectile has passed. In 
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this way, the pressure on the projectile will be kept high until it 

reaches velocities well above the highest available detonation velocity. 

The basic driver andsteel launch tubesystem was identical to that used 
in Shot No. 11,444; it consisted of a 50-cm glass-driven section, followed 

by a loo-cm steel barrel to allow the shock pressure to decay toareason- 

able lev.el before arriving at the projectile. The projectile was accel- 

erated through a 40-cm steel launch tube into a 20-cm extension made of 

precision-bore glass tubing. The steel and glass tubes were glued to- 

gether in a jig after they were made concentric by use of an alignment 

telescope. The progress of the projectile down the glass and out its 
end was observed with the framing camera. Both shots were very successful. 

Observation of the projectile in the glass was difficult because of a 

small cloud of opaque gases traveling with it, but it was possible to 

make an estimate of the projectile velocity in the glass from the record 

of the first shot, and clear pictures of the projectile during launch 

were obtained from the second shot (see Fig. 2.11). The projectile did 

not appear to be damaged, and it was moving at a velocity of 4.6 mm/psec 

which is significantly higher than the 4.0-mm/psec velocity measured when 

the 40-cm steel launcher was used alone. Glass breakup did not occur 

until well after the projectile had passed; therefore, it appears that 

the glass could subsequently be collapsed by explosive to form a second- 

stage piston. 

2.3 FEASIBILITY OF A ONE-PIECE STEEL DRIVER-LAUNCHER 

Although the launch tube shots just described are quite encouraging, 

the major drawback to such a design is the difficulty of fabricating a 

smooth joint between the steel and glass launcher sections. If a driver 

can be made of steel tubing that is strong enough to serve as a launch 

tube also, a simple, one-piece design can be made. A steel tube collapsed 

by a large concentric explosive charge will ordinarily form a thin, highly 

penetrating jet which, in this application, would destroy the projectile 

before it could be accelerated. However, if the explosive loading is 

reduced, a point is reached at which the tube is just barely collapsed 

and there is not sufficient additional energy to form a jet. In addition, 

when high gas pressures are present in the region of collapse, the forma- 

tion of a jet may be inhibited even at fairly substantial explosive load- 

ings. The feasibility of a gun designed on this basis was investigated 

during the last few months of the project. 
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FIG. 2.11 RECORD OF PROJECTILE LAUNCH FROM 
A GLASS LAUNCH TUBE, SHOT 11,685 
(Times shown are after initiation.) 
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2.3.1 COLLAPSE OF PRESSUHIZED STEEL TUBES 

The tubing chosen for the study is 4130 steel seamless aircraft 

tubing of a nominal 3/8-inch outside diameter, with 0.050-inch walls. 

The first experiment was made to determine the approximate amount of 

explosive required to just collapse the tube. For economy, a simple open 

length of tubing was used, wrapped in Du Pont sheet explosive with a step- 

wise increase in thickness every’two inches. This test showed that 

0.075 inch of explosive was just sufficient to close down the tube, while 

0.100 inch caused complete breakup of the tube after collapse. 

After this preliminary test, five shots were fired in which the tubes 

were filled with helium at 11.4 or 21.6 bars. Flash X rays were taken when 

the detonation was near the end of the tube where a thin-walled aluminum 

extension was attached to allow detection of any jet, and the collapsed 

tubes were collected for terminal observation. Table 2.4 summarizes the 

results of these shots and Fig. 2.12 shows some of the records obtained. 

Table 2.4 

PRESSURIZED STEEL TUBE CLOSING EXPERIMENTS 

HE 
INITIAL 

SHOT HE 
NO. THICKNESS PRESSURE RESULTS 

(inches) (bar) 

11,964 0.080 21.6 Did not quite close; no pitting on witness 
plate. 

11,965 0.100 21.6 Record lost; no pitting. 

11,966 0.120 21.6 Closed and bounced open; a few small pits. 

11,981 0.080 11.4 Closed solidly with no bpunce; a few very 
small pits. 

11,982 0.120 11.4 Closed and bounced; several pits + 0.5 mm 
diameter. 

These experiments demonstrate that shots with 11.4-bar helium are 

significantly different from those with 21.6 bars in that the low pressure 

shots require 0.020 to 0.030 inch less explosive thickness to collapse the 

tube completely. However, in both cases the difference between the ex- 

plosive loading just sufficient to collapse the tube and that required 

to form a jet seems to be in excess of 0.040 inch. 

Th e gas pressure acting on the insides of the collapsing tubes in 

the series of experiments described above was 1.3 and 2.5 kbar. When 

tubes are collapsed in a gun, the pressure at the collapse point will 
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SHOT 11,964 11,966 11,981 11,982 
EXPLOSIVE 0.080 0. I20 0.080 0.120 in. 
PRESSURE 21.6 21.6 I I.4 I I.4 bar 

FIG. 2.12 PRESSURIZED STEEL TUBE CLOSING EXPERIMENTS 
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rise at times to much higher values, comparable to the 5 to 10 kbar acting 

on the projectile. Thus the collapse behavior under higher pressure condi- 

tions needed to be investigated before a gun could be designed. 

Four shots were fired in which the gas shock was allowed to reflect 

from the sealed end of the tube and interact with the advancing detonation 

front and the collapsing tube. This interaction should have occurred first 

about 12 cm from the sealed end; two X-ray pictures were taken, timed to 

catch the collapse before and just after the interaction. The initial gas 

pressure in these tubes was 16.2 bars. 

Table 2.5 summarizes these shots, and Fig. 2.13 shows the pictures 

from the two most informative shots. These records indicate that there 

may be a small effect due to the reflected pressure pulse, but that 

tailored explosive loading will not be necessary, since increasing the 

explosive load over the entire length can eliminate any problems without 

overloading the lower pressure portion. It was therefore decided that a 

loading of 0.140 to 0.150 inch, made by three wraps of nominal 0.050-inch 

sheet explosive, would be used on the actual guns. 

Table 2.5 

STEEL TUBE CLOSING EXPERIMENTS VS. REFLECTED SHOCK PRESSURES 

DISTANCE FROM SEALED 

HE 
END TO POINT BEING 

FiT THICKNESS CLOSED 
. (inches) (cm) 

RESULTS 

Picture 1 Picture 2 

12,046 0.100 37.1 15.9 Not closed in 1 or 2 

12,047 0.120 26.3 13.2 Closed in 1 possible smell opening in 2 

12,048 0.120 20.1 9.3 Closed in 1 possible small opening in 2 

12,049 0.140 21.5 9.5 Closed in both 1 and 2 

2.3.2 ALL-STEEL GUN FIRINGS 

Two guns using a continuous steel tube for the driver tube and 

launch tube were constructed and fired. Honed 4130 tubing supplied 

NASA-Ames was used with the same nominal 3/g-inch OD and 0.050-inch 

studied earlier. 
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2.3.2.1 FIRST GUN 

The tubing supplied by NASA was 9 feet long, and the first shot 

was designed to fit withinthistotal length. ALexanprojectile0.160inch 

long was chosen to insure stability in the 0.275-inch bore of the 

tubing; this gave a projectile mass of about 0..49 gm/cm*. Two-thirds of 

the tube length was used as the helium reservoir and driver and one-third 

as the launch tube. To provide a gas mass of 0.49 gm/cm*, an initial 

pressure of 16.4 bars was required, and assuming a piston velocity of 

7.0 mm/+s.ec, this resulted in a peak pressure on the projectile of 10 to 

11 kbar. 

Figure 2.14 shows the calculated performance of this gun. Accord- 

ing to the calculation, the projectile should reach 12.0 mm//Lsec at the end 

of the launcher and the base pressure at that time should be about 1 kbar. 

Both the peak pressures and the muzzle pressure are probably near the upper 

limit for projectiles of this type, but since the design of the second gun 

could be modified if this one failed, it was decided to proceed. 

A 4-inch aluminum H-beam, 12 feet long, was used to support and 

align the gun tube. Two pairs of adjustable screws were provided at seven 

stations down the beam, so that vertical and horizontal adjustments could 

be made during the final alignment. The ends of these screws were turned 

down to 3/32 inch so that they could penetrate the explosive easily and 

bear directly on the steel without seriously affecting the detonation of 

the explosive. 

The projectile was made slightly oversize and forced into the 

tube so that it would act as a seal between the pressurized helium section 

and the evacuated launch section. At the muzzle of the launch tube an 

evacuated Plexiglas viewing chamber about 60 cm long was provided for 

observation of the projectile. At the far end, two timing screens were 

mounted and a steel witness plate sealed the chamber. 

Final alignment was done with the viewing chamber removed but 

resting on top of the H-beam so that the weight distribution would be 

close to the final state. A close-fitting brass slider with a concentric 

hole was placed in the launch tube and observed with an alignment tele- 

scope. When the telescope had established the position of the tube at 

the projectile and at the muzzle, the intermediate positions were brought 

onto the line joining these two. The telescope used for this reads to 
B 

30 



SHOT 12,048 
EXPLOStVE 0.120 
PRESSURE 16.2 

12,049 
0.140 in. 

16:2 bar 

FIG. 2.13 STEEL TUBES CLOSING AGAINST REFLECTED SHOCK PRESSURES 
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FIG. 2.14 CALCULATED BEHAVIOR OF FIRST STEEL GUN SHOT 
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0.0002 inch, but setting errors probably limited the alignment accuracy 

to about * 0.001 inch. After alignment, the viewing chamber was put in 

place and sealed to the muzzle of the gun with Duxseal to provide a 

vacuum seal without transmitting appreciable stress from the chamber to 

the launch tube. 

This first shot was unsuccessful, due to an error by the project 

leader just before firing. The valve from the reservoir to the vacu’um 
pump was opened instead of the one to the helium tank, so that little or 

no gas was in the reservoir when the shot was fired. This would result 

in a destructively large second shock arrival pressure or in overtaking 

and destruction of the projectile by the detonation front. 

2.3.2.2 SECOND GUN 

For the second gun, it was decided to extend the tube length 

so that a larger reservoir with a lower gas pressure could be used. Six 

feet of tubing were added to the reservoir end, so that a lo-foot reser- 

voir and a 5-foot launcher could be used. Figure 2.15 shows the calcu- 

lated behavior of such a design. Note that the peak pressures have 

been reduced to about 7 kbar and the pressure at the muzzle to 0.85 kbar, 

while the muzzle velocity is still 12.0 mm/psec. 

This gun was mounted and aligned in the same way as the first 

one, except that the extra length of reservoir was supported only by an 

ordinary chair stand, since its alignment was not critical. Figure 2.16 

shows the shot after alignment and assembly. 

No clear pictures of the projectile were obtained from this 

shot, and no record was obtained from the timing screens. A single 

crater was formed on the witness plate, which was somewhat deeper than 

those observed in the earlier launch shots. 

The camera pictures are uninformative because there is enough 

opaque smoke to obscure any projectile that might have been present. As 

in some earlier shots, however, the arrival of the projectile at the 

muzzle does appear to be signaled by a sudden change in the flow of gases 

at that point. In addition, the approximate time of arrival of the detona- 

tion front at the muzzle can be inferred from the arrival of smoke outside 

of the viewing chamber. 
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FlG.2.16 SECOND STEEL GUN READY TO FIRE 

Figure 2.17 shows a portion of the x-t diagram calculated for 

this design. This has been modified slightly to reflect the detonation 

velocity of 7.1 mm/Wet, which is what was measured for this explosive 

in a timing shot just before the second gun shot. Three possible proj ec- 

tile paths are sketched in this figure to illustrate the possible experi- 

mental behavior of the shot. 

Path (1) assumes instantaneous acceleration to the final velocity 

and gives a velocity of 5.3 mm/psec. This is physically unrealistic, but 

gives a lower limit to the projectile velocity. 

Path (2) assumes that the calculated acceleration took place up 

to a certain point and that the projectile coasted at constant velocity 

from there. This gives a velocity of 6.2 mm/psec. 

Path (3) is the constant acceleration path and gives a final 

velocity of 10.7 mm/psec. It is unrealistic because its distance from 
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the piston varies by a large factor, so that the acceleration would be 

expected to vary also. It probably gives a good upper limit on the 

actual velocity, however. 

The crater formed by this projectile was only 3.1 mm deep, 

which suggests a velocity below *even the 5. 3 mm/psec minimum. A velocity 

lower than 5.3 mm/,usec can only be explained by assuming that the accel- 

eration started earlier than shown in Fig. 2.17, which seems extremely 

unlikely. The most probable curve is somewhere between Paths 2 and 3. 

The initial acceleration was probably lower than the calculated values 

(Path 2) because of gas leakage around the projectile during the initial 

high pressure pulse, but it is unlikely that it was as low as that for 

the constant acceleration case (Path 3). We can therefore estimate the 

final velocity at 7 * 1 mm/psec. 
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2.4 LOW VELOCITY EXPLOSIVE DEVELOPMENT 

In Section 2.2 the parameters affecting a gun design were discussed 

and it was shown that a very important one is the detonation velocity of 

the explosive used for the initial driver. If a low detonation rate ex- 

plosive can be used, the driver length and hence the total amount of 

explosive required can be reduced considerably. For the all-steel gun 

described in Section 2.3, Du Pont Detasheet is used because it will 

detonate reliably in the thin sections required to avoid jetting due to 

overloading the tube. If a suitable explosive with a detonation velocity 

of 4 mm/psec can be found to replace the 7.35 mm/ksec Detasheet, the 

initial driver length can be reduced to about 30% of the length required 

by the Detasheet; if we could go as low as 3 mm/p.sec, only 16% of the 

Detasheet length would be required. 

Other project work precluded an extensive effort to develop a reliable 

low velocity explosive, but work was done to determine the failure thick- 

ness of nitromethane, Baratol, and a PETN-plaster mix which had been 

investigated earlier at these Laboratories. 

2.4.1 NITROMETHANE 

To determine the failure thickness of nitromethane in the coaxial 

geometry required for a gun, three shots were fired in which a piece of 

the tubing being used for the all-steel gun design was collapsed by e 

coaxial layer of nitromethene contained in a glass tube. Thickness was 

reduced from shot to shot until the detonation failed. Failure was 

detected both by observation with the streak camera end by terminal 

observation of the recovered tube and end plate. In addition, the condi- 

tion of the recovered tube allowed an estimate of the likelihood that e 

given loading would result in a jet, based on the experience gained from 

the shots with Detesheet. 

Table 2.6 summarizes these shots. It appears that the failure thick- 

ness and the maximum thickness allowable without jetting are quite close 

together, but even so it should be possible to use nitromethane in this 

design. If so, this can reduce initial launcher lengths to 75% of those 

required for Detasheet. 
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Table 2.6 

FAILURE THICKNESS TESTS WITH NITROMETHANE 

21.8 6.2 21.6 Detonated; collapsed completely; one 
spht III collapsed tube. 

19.0 4.8 21.6 Detonated; may be incomplete collapse. 

1-l. 5 4.0 11.4 Failed after + 18 cm of travel. 

2.4.2 BARATOL 

Baratol, a commercially available castable explosive, consists of a 

mixture of TNT and barium nitrate. In large sections, it has a detonation 

velocity which can vary from 5.0 to about 5.5 mm/,usec. To test its 

applicability to an explosive gun design, one shot simulating a glass- 

lined driver was fired. This shot consisted of a cylinder of Baratol of 

O-inch outside diameter with a central hole 29/64 inch in diameter. Its 

total length was 8 inch (built up from 2-inch segments). The shot was 

initiated by a P-40 plane wave lens at one end and was observed by the 

streak camera. The detonation velocity near the P-40 lens was 5.4 mm/ksec 

and fell steadily as the detonation progressed along the charge; a velocity 

of 4.6//1.sec was reached at the far end. This decay below Baratol’s usual 

detonation velocity shows that long shots using this explosive will almost 

surely fail unless much larger diameters are used. Steel confinement 

usually serves to reduce the failure diameter of explosives, but the 

experience with long, well confined Comp B and Comp C-3 shots described 

in Section 2.2.3 suggests that this may not be the case when explosive 

is preshocked by the helium shock ahead of the detonation. It thus ap- 

pears that Baratol is not suitable for any but very large guns. 

2.4.3 PETN-PLASTER 

Mixtures of PETN and Duroc (a dental plaster) were studied at Poulter 

Laboratories ten years ago. It was found that detonation velocities as 

low as 3.0 mm/psec could be reached before the proportion of plaster 

became so large that failures began to occurI. Since most of this work 

had been done with cylinders cast in tubing of lx-inch ID, a few shots 

were fired to see how slowly an explosive could be made to detonate in 

diameters comparable to dimensions appropriate to an explosive gun. 

Table 2.7 summarizes these shots. 
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SHOT 
NO. 

11,900 

II, 989 

12,039 

12,040 

12,041 

12,042 

12,043 

Table 2.7 

FAILUFIE DIAMETER TESTS WITH 
PETN-DUHOC 

60 

60 
- 

19 

13.5 

13.5 

13.5 

13.5 

13.5 

9.0 

RESULTS 

Ibtanrted et 5.03 nun/pm. 

Failed. 

Failed; may hrve been damp. 

Failed; may have ken damp. 

Thoroughly dry. Detonated 
et 4.3 mn//.Lsec. 

Failed; may have been damp. 

Failed; msy have been danp. 

These shots generally con- 

firm the earlier work on these 

mixtures but suggest that the 

water content of the final ex- 

plosive has a large effect on 

both the failure diameter and the 

detonation rate. Additional tests 

with closer cont,rol of the amount 

of water used in the mix and of 

the dryness after hardening will 

be required before reliable 

results can be assured. 

2.5 HIGH SPEED DRIVER DEVELOPMENT 

Although a projectile in a .simple explosive gun should, in theory, 

reach velocities as high as twice the piston velocity, the total gun length 

required will be quite large due to the low pressures present in the later 

stages of acceleration. To reduce this length, the piston must be accel- 

erated as the projectile accelerates, so that the pressure on the projectile 

remains essentially constant. Since the upper limit on detonation velocity 

is about 9 mm/psec, projectile velocities significantly higher than this 

will require some way of artificially accelerating the detonation for a 

period near the muzzle of the gun. One method of doing this is to initiate 

the main explosive by striking it with a coaxial metal cone accelerated in- 

ward by a secondary layer of explosive. By suitable variation of the cone 

angle and thickness and the secondary explosive thickness, the phase velocity 

of the point of impact between the cone and the primary explosive can be 

made almost any value desired. 

2.5.1 PLANE GEOMETRY SHOTS 

Three shots were fired to determine the minimum velocity required 

for a l/8-inch-thick flying aluminum plate to reliably initiate Comp B 

when striking it. The flat aluminum flyer plate used for these tests was 

accelerated by Du Pont Detasheet. The plate was driven onto one face of 

a flat slab of Comp B and the detonation arrival at the opposite face was 

recorded by the streak camera. The amount of Detasheet and the angle 

between the flyer plate and the Comp B were varied as shown in Table 2.8. 
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A Detasheet thickness of 0.445 cm was required to accelerate the aluminum 

to a velocity high enough-about 1 mm/p.ec-to initiate the Comp B reliably. 

Table 2.8 

TWO-DIMENSIONAL HIGH PHASE VELOCITY SHOTS 

FLYER 
SHOT EXPLOSIVE 
NO. THICKNESS 

(cm) 

11,573 0.246 

t 

11,574 0.358 

11,575 0.445 

PHASE 
VELOCITY 
IN COnP B 
(mm/psec) 

REMARKS 

21.1 Very poor breakout; 
ragged detonation. 

21.7 Initial breakout weak; 
strong detonation at 
late end only. 

22.7 Excellent, strong, 
uniform detonation. 

2.5.2 CONICAL GEOMETRY SHOTS 

With the information derived from the plane geometry shots a conical 

assembly was designed to collapse on a central core of Comp B and glass in 

such a way that the point of impact moved along the Comp B surface at about 

15 mm/psec. This impact then initiated a conical detonation front in the 

Comp B with a phase velocity along the glass of 15 mm/psec. Two shots 

were fired to test this design. 

The coaxial, conical, high speed explosive driver is illustrated in 

Fig. 2.18. The interior of the driver system cannot be directly observed 

optically so the plastic viewing barrel shown in the figure was attached 

H D STYROFC’JAh4 /DUPONT.. DETA COMP 0 TUBE7 PLEXIGLAS 4” x 4” x 6” 
ALUMINUM CONE 

/ 

SHEET “D” 
0.175” THICK 

I i/2” 0 D WITH 

/ 

WITH A POLISHED HOLE 

/ 
INITIATION 0.125” WALL 0.453”HOLE 

l-i \ . !P?F, 
GLASS TUBE I mm WALL 

l/4” MASONITE 
GE.-4111-a. 

FIG. 2.18 COAXIAL CONICAL HIGH-SPEED DRIVER 
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ta nlltiu measurement af velocity of the reaultnnt ahack in %1,6=bsr helium, 

The design phaee velocity far these e;hata way 14.3 mm/pcratl, which would 

redlilt in a perfect g&e hhbck velbcity ef lg mm/j.o4ac. l3eclluue tlI iani%&= 

tibh, the helium became significantly different from ~1 parfeet was under 

khe high speed driver conditions, and the expected ahaek velocity WRB 

therefore ltjwsred to it3,9 mm/psec. The aetunl ~ka rheck veleeikiee of 

the two shbts (one record ici ahbwh ih Fig. 2.19Iwere 18.9 rend 11.5 mm/pccIec, 

in goad agreement with the calcufeted value. The bInbill diesrepancy ia 

@daily accbuntrd far by possible errors in the axplaaive driver design. 

The method nppaare to work very well, end there meremu to be na reti%on 

why it could not be extended to velocities at lelret as high ua the 

22,7 mm/peec recorded in Shot No. 11,545 if required, 

3.6 SHAPED CHARGE bHIVEAS 

Although the coaxial glens- or ateel-lined chnrgeu dircuaasd nbeve 

bhow great promise an drivers, it still cleemcl possible that other expls- 

dive ayatems may be better for some epplicationd. Ohe al ternate ayatem 

ihvestigated during the project used a ahaped charge jet na the pirtsn 

driving the helium dowh the berrel. It ~a.3 felt tknt such a deeign might 

have at leant two advantages over the glass-lined system-granter piston 

maaa and higher piaton velocity. At the same time, there wnn the por- 

eibility that the tip of the jet might not be large enough to fill the 

barrel, aa that gas leakage would be serious. 

2.6.1 PREVIOUS WORK AT BRL 

A shaped charge deaign which seemed well suited to thir application 

WEB described by Kronmav and Merendino of BAL5. Thir design, which ir 

ahown in Fig. 2.20, hea the apex of the conical liner removed and replaced 

by what is called a “spitback tube.” Although the details of operation 

of this system are not known, the effect of the modification is to pro- 

duce a jet which has a blunt tip of an unusually large diameter. Typically, 

for the size charge shown in Fig. 2.20, this tip is 10 to 15 mm in diameter 

and 20 to 30 mm long. For aluminum liners and the cone angle rhown, the 

tip velocity is about 9.9 mm/psec. Other velocities have been produced 

by varying the cone angle, but the mass in the tip and its diameter begin 

to decline if the velocity is raised too far.. 
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60.Ipec 62.2 psec 

64.3psec 66.4psec 

FIG. 2.19 SHOCK IN 21.&bor HELIUM DRIVEN BY 15 mm/prc 
DRIVER, SHOT 11,626 (Times shown are after initiotlon.) 
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2.6.2 WORK PERFORMED AT SRI 

Twelve shots were fired at SRI to determine the behavior of this 

shaped charge jet as a piston. These shots are summarized in Table 2.9 

and will be briefly discussed here. 

The first shot was fired to confirm that the behavior of SRI jets 

in free air was the same as that reported by BRL. Following this, four 

shots were fired in which the interaction of the jet with steel tubes 

was studied. These showed that a tube of 6-mm ID was too small to allow 

a significant amount of the jet to pass through, while a 12-mm tube was 

much more satisfactory. 

The final seven shots were fired to study the efficiency of the jet 

as a piston driving helium in a long (120 to 240 cm) tube. The three 

types of experiments performed are illustrated in Fig. 2.21. Figure 2.21(b) 

was the configuration used to measure the shock velocity. The large 

pressurized chamber in Fig. 2.21(c) was used to observe the separation 

of the shock front and the jet, and in Fig. 2.21(d) the projectile launch 

design is shown. 

It appears from these experiments that, although one successful 

launch was made, the shaped charge jet driver has several severe draw- 

backs. The worst of these is the leakage of gas around the jet which 

slows the buildup of the compressed gas slug and thus requires very long 

barrels. This defect is made more serious by the apparent attrition of 

the jet itself as it travels down the barrel. If we assume a nonleaking 

piston, the decay in velocity between 120 and 240 cm can only be explained 

by a decrease of piston mass and/or velocity. Leakage alone would result 

in a decrease of shock velocity only down to a steady state value equal 

to the jet velocity, 9.8 mm/psec, so that this is obviously not the 

major cause of the decrease observed. 

In spite of these drawbacks, the shaped charge jet driver may still 

be a useful design for some applications. These might include use as a 

transition stage between two sections of coaxial glass-lined driver in 

order to cover a region where a massive tube is required because of very 

high gas pressures or because of the guidance requirements of a projectile 

during the early subsonic stages of its acceleration. 
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Table 2.5 

SHOT 
NO. 

10,893 

10,900 

10,901 

10,925 

LO, 927 

11,087 

11,088 

11,089 

11,094 

11,194 

11,217 

11.506 

BARREL BARREL END 
IIAMETER LENGTH CONFIGUHATION 

(mm 1 (cm) (Fig. 2.21) 

-- 

6 

6 

6 

12 

12 

12 

12 

12 

12 

12 

12 

-- Shnped charge Jet tip 12 mm dia. x 20 mm long; 
only. Velocity 9.9 mm/+sec. 

15 (a) but barre 
starts at bas 
of cone. 

30 (a) but bare 
starts at bas 
of cone. 

15 (a) with 5 cm 
standoff. 

15 (a) 

120 (b) 

120 (cl 

120 Cd) 

240 (b) 

240 Cc) 

240 (d) 

160 (d) with 
6 mm launcher 

RESULTS 

Very faint cloud of Al got through. 

Essentially nothing got through. 

Definite jet 
P 
ot through. Penetrated 

25-mm steel p ate. 
9.5 rlm/}Lsec. 

Tip velocity 

Shock velocity 8.7 mm/+sec in Plexi- 
glasi, average velocity 9.7 mm/p.sec 
to first view. 

Very small separation between jet and 
shock; jet still quite massive. 

No view of projectile; thick clouds 
of opaque material obscured view. 

Shock velocity 6.0 mm/~sec in Plexi- 
glas; 8.6 mm/+sec average to first 
sight; gas appears to be clear at 
least 22 pet after shock passage. 

Shock going 4-5 mm/psec barely visible 
ahead of earl 

r, 
cloud; if this is 

shock slowed y expansion, it would 
be 8 cm ahead of solid part of cloud 
seen later. Early cloud probably 
ablation from muzzle edge. 

Projectile velocity 2.9 mm/++x implies 
2.4 kbar avera e; 
6 mm/pet woul d 

shock velocity of 
result in 5 kbar peak 

pressure. 

No sign of projectile on X rays. 
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FIG. 2.21 HARDWARE FOR SHAPED CHARGE EXPERIMENTS 
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SECTION 3 

NUMERICAL, GUN DESIGN STUDIES 

In addition to the experimental work discussed in Section 2 and the 

basic theoretical work discussed in Section 4, several studies were made 

of an intermediate nature. Four of these used the artificial viscosity 

computer code developed during this project to investigate the behavior 

of some special gun designs. The final study was a preliminary design of 

a system to provide a piston with constant acceleration up to twice deto- 

nation velocity. 

3.1 DOUBLE SHOCK CALCULATIONS 

Most of the gun designs discussed in this report produce a pressure 

history on the base of the projectile which consists of a series of peaks 

caused by the arrival and reflection of shock waves. Between the peaks 

the pressure falls rapidly, resulting in a longer acceleration distance 

than would be the case if the pressure were more nearly constant. 

One way to reduce the drop between peaks is to generate a second 

shock wave (or more) which will arrive at the projectile between the ar- 

rivals of the primary shock and thus provide a more nearly constant base 

pressure. A few computer runs were made during the project to see how 

practical such a system might be. Figure 3.1 shows the time-distance plot 

for one of the more successful runs. An initial barrel length of 170 cm 

filled with helium at 20 bars had a piston driven down it at 6 mm/+ec. 

After this piston had gone 120 cm and the shock was at 160 cm, the piston 

velocity was changed to 12 mm//&.ec, generating a second shock. The figure 

follows the action as these two shocks reflect back and forth between the 

piston and a 0.5 g/cm* projectile. 

i 
The first shock applied 8.5 kbar to the projectile; this decayed 

I 

i 

slowly to about 4.6 kbar by the time the second shock arrived. Although 

the timing of this second shock was good, its magnitude was too great, since 

the pressure after its reflection was 54 kbar. These peak pressures 
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continued to rise as the piston and projectile got closer and closer 

together. At the closest approach, the pressure reached 107 kbar and the 

original 170 cm of gas had been compressed into about 4 cm. 

Although the pressures reached in this experiment are much higher 

than desired, it is encouraging to see that a system of multiple reflec- 

ting shocks can be set up and maintained for a reasonable length of time 

without coalescing. In this way, many closely spaced pulses can be applied 

to a projectile. Additional calculations will be required before a work- 

able design can be chosen, but this concept looks very promising as a 

means of reducing launcher length. 

3.2 CONTROL OF SECOND SHOCK ARRIVAL 

In a single shock gun of constant piston velocity, the first shocks 

and the reflected shock will produce identical peak pressures on the pro- 

jectile only if the gas mass is about equal to the projectile mass. As 

we have shown earlier, this may often lead to an excessively long gun, 
and it was decided to see if this condition could be circumvented. 

The technique discovered for controlling the second shock arrival 

pressure is to change the velocity of the piston just at the time when 

the shock reflects off it. In the extreme case of a very massive projectile, 

for example, after the shock reflects from the projectile all the gas between 

the projectile and the reflected shock is stationary. Thus, if thepiston 

is brought to a halt just as the reflected shock reaches it, the whole 

system will be at rest and all the gas will be at the reflected shock 

pressure. Extensive calculations of cases with finite-mass projectiles 

have not been made, but it appears that if, at the time the shock reflects 

from the piston, the piston velocity is set equal to the projectile 

velocity, the pressure produced on the projectile when this reflected 

shock reaches it will not be more than the pressure produced at first 

arrival. 

3.3 ACCELERATING PISTON CALCULATION 

It was determined that the first and second shock pulses can be con- 

trolled by the techniques described above; it then remai’ned to be estab- 

lished what the remainder of the piston velocity history should be. One 

computer run was made in which the piston velocity was programmed to 

follow the projectile at a constant distance as it accelerated. The time- 

distance plot of this run is shown in Fig. 3.2. 
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FIG. 3.2 CALCULATED ACCELERATION OF A PROJECTILE 
BY AN ACCELERATING PISTON 

The piston velocity was initially 6.3 mm/psec, the helium pressure 

was 20 bars, and the coaxial explosive driver tube length was 100 cm. The 

helium was treated as a perfect gas, and a projecti le of 0.5 g/cm* was to 

be accelerated. As shown in the figure, the helium driver shock arrived 

at the projectile at t = 0, at which time the piston was 25 cm behind the 

projectile. Under these conditions, the incident helium shock velocity 

was 9.4 mm//Lsec, which raised the gas pressure to 1.6 kbar. Upon reflec- 

tion from the projectile base, the pressure rose to 9.9 kbar and a shock 

propagated back toward the piston, arriving there after about 30 psec. 

Th e program was then directed to set the piston velocity equal to the pro- 

jectile velocity and to reset it to the new velocity at every step there- 

after. Thus the piston was made to follow the projectile at a constant 

distance. 

50 



. 

At the first resetting, the projectile velocity was about 4 mm/,usec; 

therefore the piston velocity was decreased to that value. The reduction 

weakened the reflected shock sufficiently that, when it reached the piston, 

it raised the pressure to only 6 kbar. Since the gas mass did not equal 

the projectile mass, the second pressure peak ordinarily would have been 

higher than the first one. After about 30 psec more, the velocities had 

risen again to 6.3 mm/psec, and the end of the run, 140 psec after the 

first resetting, the velocities we.re 15.8 mm/psec. During the entire ac- 

celeration process a single shock was reflecting back and forth between 

the projectile and the piston, making almost four round trips in all. 

Each time the shock arrived at the projectile, the base pressure rose to 

slightly over 6 kbar and then fell to approximately 3 to 4 kbar before 

the next shock arrival. The comparatively uniform pressure resulted in 

efficient acceleration. The average acceleration was 0.094 mm//lsec*, 

(approximately lo7 g), and the projectile reached 15.8 mm/psec after 

traveling only 140 cm. 

3.4 ACCELERATING PISTON DESIGN 

The gun operation calculated in Section 3.3 appears very promising; 

it is therefore interesting to see if such a programmed piston velocity 

history can actually be produced. The conical high velocity shots de- 

scribed in Section 2.5.2 showed that the maximum velocity called for here 

is feasible; the only question then, involves the size of a device which 

will give the correct intermediate history. 

Figure 3.3 illustrates the geometry of the situation. For this cal- 

culation it is assumed that a shell of aluminum is driven across an air 

gap at a constant velocity, V, and that this velocity vector is perpen- 

dicular to the axis of symmetry at all points. We also will assume that 

the component of the detonation velocity parallel to the .axis is constant 

and equal to the detonation velocity, D. These approximations are reason- 

able, provided the slope of the shell is not large. 

We define t = 0 as the time the detonation starts at the point of 

origin. Then the shell will impact at x at a time, t, given by: 

x I- 
t 

= 77’7 
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FIG. 3.3 GEOMETRY OF SHELL DESIGN FOR A CONSTANTLY ACCELERATING PISTON 

We wish to have the phase velocity, P, of the point of impact increase 

with constant acceleration, a, so: 

l 2 x = -at and t 
2 

Substituting this for t in Eq. (3.1), we solve for r: 

(3.2) 

to get the equation of the curve. 

The value of n at the point where the phase velocity is equal to the 

detonation velocity is xD, given by 

If the final phase velocity is given by ND, then the total length will be: 

N2D2 
x = max 2a 

Since a real design would probably start at the point where P = D, the 
length required will be 

X 
q ax 

-xD = g (N* - 1) (3.3) 
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‘I.1 me masimum I’ occurs at xu alid is gi veil Ly 

VD 
r = max 2a 

The minimum r of interest in a real design occurs at xmax and is given by 

VND 
r z- 

min a 

and the difference between these two radii is 

VD(N - 1)’ 
r r max min (3.4) 

2a 

T o set a rough idea of the dimensions of such a device, consider the 

case for D = 106, a = lOlo, and V = 105; these cgs values are of the right 

order of magnitude for a real case. 

When N = 2: 

x max -xD = 150 Clll 

and 

r max - rmin = 5 cm 

When N = 3: 

x - xD = 400 cm max 

and 

r r max - mln = 20 cm 

These values show that a design to provide a piston moving at twice 

detonation velocity should be quite straightforward. The diameter of a 

shell giving three times detonation velocity is rather large, but could 

be cut down by dividing the shell into sections. Each section wouldhave 
the proper slopes but the radii would be reduced so that the smallest 

end of each section would just touch the central explosive. Separate 

initiation systems would be provided for each sectio,n to allow proper 

sequencing. 
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3. 5 STOP-START GUN DESIGN 

It has become clear during this project that a truly high perfor- 

mance gun.must allow the piston to continue past the original projectile 

position and follow the projectile down the launch tube. The all-steel 

gun was studied as one of the simplest of such designs. Since its per- 

formance was not very close to the predicted values, the simple 

continuous-tube design may have to be modified to provide increased tube 

confinement where the early stages of acceleration take place. This in-. 

creased confinement will probably make it impossible to collapse this 

part of the tube satisfactorily, so the piston will have to stop at the 

projectile and then be reformed later at some point a short distance 

away. 

Figure 3.4 shows a time-distance plot of a design which has been 

studied using the computer code. Nitromethane was assumed as the ex- 

plosive and a 0.5 gm/cm* projectile was to be accelerated. The initial 

pressure was 12.4 bars which resulted in peak pressures between 5 and 

10 kbar. On the basis of our experience with the glass launch tubes 

described in Section 2.2.4, we assumed that a heavy launch tube would 

be required only until the projectile velocity had reached 4 mm/psec. 

With the first computer run we studied what happened when the piston 

was stopped at the projectile position and not restarted. From this run 

the early projectile acceleration was determined, so that the point at 

which velocity exceeded 4 mm/psec could be found. In addition, the tra- 

jectories of the gas cells near the piston could be followed to aid in 

determining the best time to restart the projectile. (These are the 

trajectories shown in the figure.) 

The time chosen for restarting the piston was on the extrapolated 

time-distance line of the original piston. This time is experimentally 

convenient, since the detonation can be led around the heavy walled 

section without any complicated delays or auxiliary initiation systems. 

Three runs were made with the piston restarted. In one, the re- 

started piston continued at 6.35 mm/psec. The second had it restart at 

7.1 mm/psec and then shift to 7.9 and 8.5 mm/psec as the projectile 

accelerated. This second run showed that all the velocity shifting took 

place in a time short compared to the shock transit time from piston 
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to projectile. The run shown in Fig. 3.4 was therefore made. In this 

run the restarted piston moved immediately at 8.5 mm/psec; this is the 

detonation velocity of Uctol and is close to the maximum detonation 

velocity available. 

The calculated behavior of this design looks quite attractive. The 

second pressure peak is higher than is desirable; to offset this, ad- 

ditional gas mass should be included in a future run. Only 13% of the gas 

is lost when the piston is restarted; this loss might be reduced in a 

real gun if the glass jet has enough mass to push additional gas through 

the heavy-walled section. For higher performance a detonation speeded 

up by a conical collapsing driver should be added almost immediately 

after the transition section so that pressures will not fall off in the 

later stages. 
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THEORETICAL CALCULATIONS 

4.1 HELIUM GAS 

To make accurate theoretical estimates of the magnitudes of the 

viscous boundary layer, the thermal boundary layer, and iadiation energy 

transfer, and the influence of ionization on flow calculations, it is 

first necessary to determine the temperature, density, pressure, internal 

energy, and degree of ionization in the shocked gas of the gas gun driver. 

In addition, if the real gas effects produce an appreciable deviation 

from the state predicted by perfect gas theory, a reasonably accurate 

method of calculating the state of the driver gas at high internal 

energies must be included as a subroutine in the computer code for 

dynamic gas gun calculations. 

For these reasons a relatively simple computer code was developed 

which calculates the thermodyltamic state of helium gas behind a plane, 

steady shock frolit driven by a constant velocity piston. The thermo- 

dynamic state reached when this shock reflects from a rigid wall is also 

calculated. The simplified hydrodynamic situation allows most of the 

computational effort to be directed toward the calculation of thermo- 

dynamic quantities, yet is closely related to the actual situation in 

the gas gun. 

The thermodynamic states so obtained may be considered upper 

bounds of internal energy, temperature, pressure, and density, since the 

action of a finite mass piston and a finite mass projectile will be to 

propagate relief waves into the shocked gas. As a consequence, the 

boundary layer, radiation, and ionization effects calculated on the 

basis of this idealized situation will be conservative upper bounds on 

the behavior in the actual gas gun. 

The idealized gas gun also allows us to separate the difficulties 

associated with integrating the complete hydrodynamic equations from the 

problems of computing the thermodynamic state, and enables us to 
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concentrate on developing an effective subroutine for calculating the 

latter. This subroutine may then be easily included in the hydrodynamic 

calculations of the complete gas gun code. 

Helium is a noble gas, and its two electrons are very tightly bound 

to the nucleus. As a consequence it is the most difficult of all gases 

to ionize. The first and second ionization potentials of helium are 

24.46 and 54.14 volts, respectively. If we consider the maximum expected 

shock velocity in the helium to be 15 km/set, the corresponding kinetic 

energy per atom of helium would be no more than 4.22 electron volts. At 

this energy level we expect a significant fraction of the helium atoms 

to become singly ionized, but any second ionization ought to be negligible. 

The thermodynamics of the situation will determine how much of this 

kinetic energy will be converted by the shock into thermal energy, into 

interaction energy, into energy of ionization, and into residual kinetic 

energy. 

The effects of interatomic forces on the thermodynamic properties 

of helium (real-gas effects) are fairly small at high temperatures. 

From the calculations of Harrison6 we may conclude that for temperatures 

above 10,OOO"K and pressures lower than 3 kbar the interaction energy is 

less than 1% of the ideal gas internal energy. When ionization occurs, 

the forces of interaction are electromagnetic in nature and are strong 

compared with the interactions between neutral helium atoms . However, 

if the degree of ionization is small we should not expect a significant 

contribution of the interaction energy to the energy of the gas. 

There is considerable theoretical difficulty involved in obtaining 

an accurate equation of state when the electron-ion interactions are 

included. A rather large number of approximate schemes for estimating 

these ionization correction terms in the equation of state has appeared 

in the recent literature?*a For the present we shall neglect interaction 

corrections and consider each species to be a perfect gas, an approxi- 

mation for which there is a well-developed statistical theory. 

We assume the shocked helium to be a mixture of the three species 

He, He+, and e-, each of which is a perfect gas. Within the mixture we 

allow the chemical reaction 

He Z' He+ + e- (4.1) 
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and define an ionization fraction by the ratio of the number of helium 

ions to the original number of helium atoms: 
* 

n(He+) 
a = (4.2) 

n0 

The fact that in general the equilibrium ionization ratio depends upon 

temperature and pressure indicates that the mixture of perfect gases is 

no longer a perfect gas. The equation of state of the ionizing gas may 

not be simply expressed, although the equation of state of each component 

is readily calculated. 

For statistical calculations, the most convenient independent state 

variables are the temperature and molar volume; the thermodynamic 

function associated with these variables is the Helmholtz free energy 

function, F, defined by the relation 

F = E - TS (4.3) 

where E is the internal energy, T the temperature, and S the entropy of 

the gas. For convenience in discussing the thermodynamics we shall 

consider all extensive variables, such as volume, internal energy, 

Helmholtz free energy, etc., to be taken with respect to one mole of the 

substance in question. The molar Helmholtz function is related to the 

statistically derived partition function 2, through the equation 

F = -RT&z(v, T) (4.4) 

where R is the universal gas constant. 

The partition functions may be derived from statistical quantum 

mechanics or spectroscopic data on atomic energy levels, or both. A 

common approximation to the exact partition function for a single atom 

is to use spectroscopic data for the electronic energy levels within 

the atom, and to use the results of a quantum mechanical calculation 

for the translational energy levels within a volume V. 

A certain amount of judgment must be exercised in calculating the 

partition functions associated with the electronic energy levels, for 

the exclusion of interaction effects generally causes the sum over an 
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infinite number of energy levels to diverge. A variety of schemes has 

been proposed* to avoid this divergence by summing only over a reasonable 

number of energy levels. For our purposes we shall include only the 

first few energy levels, a practice which is supported by a number of 

similar calculationsg*10 of the equation of state of helium gas. The 

partition functions for each species, which we consider good approxi- 

mations for temperatures less than 50,00O"K, are given by the expressions: 

(1 + 3e-230.000/T + 1&243,000/T) (4.5) 

Z(He+) = F 
3/2 

(2 + &-473,000/T) 

Z(e-) = V 

(4.6) 

(4.7) 

In these equations V is the molar volume of the species, M is the mass 
of the helium atom, m is the mass of the electron, h is Planck's constant, 

and k is Boltzmann's constant. These partition functions contain all the 

detailed information we shall need concerning the thermodynamic behavior 

of each species. 

The molar Helmholtz free energy of each component of the ionized 

helium gas is determined from the partition function through the appli- 

cation of Eq. 4.3. This free energy is calculated from a zero point 

based on the ground state of the system. In order to account for the 

difference in ground state energy between the helium atom and the helium 

ion, we must include in the free energy of the latter a dissociation 

energy, D, of 24.46 electron volts. 

Since we have neglected interaction energies, the free energy of 

the mixture of ions, electrons, and neutral atoms is given simply by 

adding the free energies of each species. If we start with one mole of 

neutral helium, then upon ionization we have (1 - ti) moles of the neutral 

gas, c1 moles of the ion, and ~1 moles of electrons. The common volume 

*For a bibliography of these efforta, see Refs. 7 and 8. 
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we take to be V, so that the molar volumes are inversely proportional 

to the number of moles. The free energy of the ionized helium may thus 

be written in the form 

F(a,V,T) = (1 - “,I$, (a& , T) + aFHe+ ($ a T) + aFe-(;l ‘) + aD 

(4.8) 

The Helmholtz free energy function is a complete equation of state 

in that all thermodynamic functions may be derived from it. For example, 

we have 

p= -$ 
( ) T.Q 

(4.9) 

(4.10) 

E = F+TS (4.11) 

H = F+TS+PV (4.12) 

G = F + PV (4.13) 

The equilibrium value of the ionization fraction is given by the 

condition that at equilibrium the Helmholtz free energy must be a 

minimum with respect to variations in a ; hence we have 

aF ( ) zt Tv= 
0 

. 
(4.14) 

For later reference we shall indicate here the results of calcu- 

lations concerning the pressure, enthalpy, and equilibrium ionization 

fraction. Rather than expressing the result in molar quantities, we 

shall choose as the basic quanta1 unit a unit mass of neutral helium 

gas. We introduce the gas constant per unit mass of h’elium: 

R + 8.3144 x lo7 

4.003 = 
2.077 X lo7 ergs/OK- gm (4.15) 
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It is convenient to express the thermodynamic functions in terms of a 

unit mass of gas, and to denote them by lower case letters. Expressing 

the numerical quantities in cgs units and the Kelvin scale of temperature, 

we obtain 

PV = (l+a)RT 

= (l+a) +RT+(l-a)R 
+ 13 x 2.43 x 1ose-2.43 x 105’T 

e 
1 + xc-2.3x 105'T + 1se-2.43X lo5'T 

I 

73 x lose-4.73 x 1o5'T 
+ aR + aR(2.85 X lo51 

2 + 8,-4.73x 10 5/T 
(4.17-I 

where 

k(T) = (0. 333)T5” 

J k(T) 
a = 

p + k(T) 
(4.18) 

(2 + Be-4.73 X 1o5'T) (2)~ 2.85 x 105/T 

(1 + 3e-2.3 x 105'T + 1se-2.43 X 105'T 

(4.19) 

This is the basic set of thermodynamic equations which must be 

solved simultaneously to obtain an equation of state for ionizing helium 

gas. An iterative scheme for this purpose has been developed which 

successfully calculates pressure, temperature, degree of ionization, and 

speed of sound as functions of the density and internal energy of the gas. 

The program is written in such a way that it can be included as a sub- 

routine either in the Hugoniot calculations or in the complete flow 

calculations. 

The iteration proceeds by a Newton-Raphson technique using temper- 

ature as the variable. The difference between calculated and given 

values of the internal energy is tested, and when the relative deviation 

is less than some predetermined accuracy (usually 10S5) the iteration 

stops. The number of iterations required depends upon an initial guess 

for the temperature. If the guess is reasonably good (as it is in a 
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flow computation if the previous temperature of a cell is taken as the 

guess), the iterative procedure converges in one or two iterations. 

4.2 HUGONIOT CALCULATIONS 

Using a standard notation, the Hugoniot jump conditions in a hydro- 

dynamic material are: 

PI+, - uo) = pl(us - ul) (4.20) 

Pl - PO = potus - uo)hl - uo) (4.21) 

e1 - eo = + (pl+ po(; - p’;)=$ (pl+po)(uo- v,) 

(4.22) 

Assuming we know all quantities associated with the initial state, 

we have five unknowns: us, ur, pl, el, pl. The three equations shown 

above and a thermodynamic relation connection p, p, and e reduce the 

number of independent unknowns to one. The shocked state is therefore 

completely specified by any one of the unknowns. For the implosive gas 

gun driver the most useful variable was found to be the particle 

velocity, ul. 

The basic problem is, given a thermodynamic specification of the 

material in the form p = p(p,e), to find a method for determining the 

flow variables in the shocked state. One technique in common use is the 

graphical technique, in which a portion of the Hugoniot curve defined by 

Eq. 4.22 is sketched in the p-v plane and graphical constructions are 

used to obtain the shocked state. Several difficulties prevent this 

method from being useful in studies of the implosive driver. In the first 

place it is not possible to solve directly for the Hugoniot line, so an 

iterative technique must be used for each calculated point. Second, even 

were such a Hugoniot constructed, it would be valid only for a particular 

initial state. The construction would be useless in comparative studies 

based on a varying initial pressure, and it would be useless in obtaining 

the state of reflected shocks. Thus the large number of calculations 

that would go into the construction of a single Hugoniot curve would be 

to a large degree unnecessary. 
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A different approach was tried during this project. A procedure 

was developed which obtained directly the shocked state, given the 

particle velocity, with a minimum of numerical calculations. We first 

eliminate the shock velocity from the mass conservation equation 

(Eq. 4.20): 

P(Us - uo) = (Ill - uo) (4.23) 

where we define 

P = 1 -PO 
Pl 

If we now eliminate the shock velocity from Eq. 4.21, we obtain 

PO 
+-(u, - uo) 

2 
P, = PO 

P 

Eliminating the pressure from Eq. 4.22 we obtain 

PO 1 
el = eo+lL- +-(u, - uo) 

2 

PO 2 

(4.24) 

(4.26) 

We now have the situation in which, given a value for ,LL, we may 

obtain values for pl, pl, and el. For a compressive shock, we have 

O<p<l 

and hence 

1 PO 
e. + Yj- (II1 - u,) 2 < el < e. +-t 

PO 
+u, - uoj2 

PO + Po(U1 - uo) 2 < 
Pl 

<cc 

For every value of pl, el we may calculate a value of p from the 

thermodynamic relation p = p(pl, el). As a consequence, for every 

value of p we may calculate the percentage difference between these 
two pressures: 
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F(p) = 
P - P1 

P 

If p(p, e) is bounded for finite values of p, e and approaches 0~ as p 

approaches 03, then F(p) goes continuously from -co to +l. 

From the knowledge that F(p) > 0 as p*' 1 and F(p) < 0 as ,U - 0 we 

may bracket the root F(p) = 0. This corresponds to matching the thermo- 

dynamic description of the material with the shock jump conditions, and 

will obtain the desired state of the shocked material. It should be 

noted that the root is already necessarily bracketed between /.L = 0 and 

p = 1 regardless of the thermodynamic description of the material, so 

that a numerical search procedure need not be very sophisticated to find 

the root to any desired degree of accuracy. 

The procedure chosen for the gas gun calculations is the “regula 

falsi” method dating back to Newton. A root of F(p) is first bracketed 

within a small interval Al, by the following method: if F(p) > 0 then 

change ,LL by -A+; if F(p) < 0 then change ,U by +A,. We know that F(p) = 0 

somewhere between the points p. and p1 at which F(p) changes sign, and 

proceed to an iteration defined by 

Fbk) 
pktl = pk 

-- 
G 

where C is the slope of the line connecting PO and PI: 

F(/+ - F(p.,) 
G = 

AP 

A program incorporating this iterative procedure was combined with 

the equation of state subroutine for ionizing helium, and several cases 

were calculated. In addition to the “real gas" computations for helium, 

calculations were performed for a perfect gas. The only change necessary 

in the program was to insert the equation of state for a perfect gas: 

P = (Iy - ljpe 
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The calculations were carried out to an accuracy of five figures 

and rounded to four. Cases were run for initial helium pressures between 

0.1 and 40 atmospheres, with piston velocities ranging from 5 to 15 km/set. 

A representative sample of these calculations is shown in Figs. 4.1 

through 4.6, including both the real gas and the perfect gas results. 

The sharpest and earliest deviation from perfect gas predictions is 

found in the reflected shock velocity, 

the reflected shock velocity' 4'4* 

At a piston velocity 

of 10 km/set, in a perfect gas is about 

26% higher than in the real gas. Since this reflected shock velocity 

will affect the timing of important events in the gas gun, it is necessary 

to include the nonperfect gas thermodynamics in the final gas gun code 

for initial shock velocities of 10 km/set or higher. 

It is interesting to note that, at piston velocities at which the 

change in the reflected shock velocity becomes apparent, the ionization 

fraction due to the first shock is less than l/lOth of 1 percent and 

rises to approximately 1 percent behind the reflected shock. This 

apparent anomalous influence of small amounts of ionization is partially 

due to the fact that a small percentage change in the ratio of velocities 

on either side of the shock in material coordinates becomes greatly 

magnified on transforming to laboratory coordinates. In addition, the 

deviation from perfect gas thermodynamics is compounded, since the 

calculated state behind the incident shock is the initial state for the 

reflected shock. 

4.3 BOUNDARY LAYER CALCULATIONS 

The initial shock propagating into undisturbed helium gas simulta- 

neously accelerates the gas to a certain particle velocity and greatly 

increases its temperature. Consequently, just behind the shock front 

there is a discontinuous jump between the velocity and temperature of 

the gas and the velocity and temperature of the wall. Viscosity and 

thermal conduction tend immediately to diffuse these discontinuities 

into the gas, thereby producing zones of disturbance called the viscous 

and thermal boundary layers. 

If either or both of these boundary layers penetrate deeply into 

the driver gas, the performance of the gas gun may be detrimentally 

affected. It is therefore necessary to estimate the thickness of both 

boundary layers for typical experimental situations. As a basis for 
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these calculations we will use the velocities and thermodynamic states 

calculated for the idealized gas gun mentioned previously. 

A steady, plane shock wave may most readily be considered in 

material coordinates, in which the shock front is stationary (see 

Fig. 4.71. In these coordinates the gas streams in from the left at a 

velocity u,,( = us1 and streams out at the right at a velocity ul(=u,-up). 

The wall is moving to the right at a constant velocity u.(= us). 

Characteristically, discontinuities in temperature and velocity 

diffuse into an undisturbed medium. As in all diffusion problems, the 

disturbance is contained approximately in a region bounded by a surface 

where y/6 is a constant (D is the diffusivity of the medium), and the 

magnitude of the disturbance within this region is proportional to the 

magnitude of the discontinuity. In the boundary layer the disturbance 

is swept along with the stream at the velocity uI; hence we have, 

approximately, the relation x/u1 = t. As a consequence of the simulta- 

neous influence of this convection and diffusion, the boundary layer is 

contained within a region bounded (see Fig. 4.7) roughly by 
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FIG. 4.7 BOUNDARY LAYER GROWTH BEHIND A SHOCK FRONT 
IN MATERIAL COORDINATES 

6(x) = c E 
J 

(4.27) 
Ul 

Here 6(x) is the thickness of the boundary layer, and c is a dimensionless 

parameter of order unity, whose exact value depends upon the definition 

of the edge of the boundary layer. 

The diffusivities connected with thermal and viscous diffusion in 

a gas are given by 

DT=R 
PCP 

(4.28) 

and the boundary layer thicknesses are determined accordingly. (Here 

k is the thermal conductivity, p is the viscosity, and cP is the specific 

heat at constant pressure of the gas.) 
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These considerations may be justified in detail by reference to the 

complete Navier-Stokes equations for a viscous, heat-conducting gas, or 

by reference to a standard textbook on gas dynamics." The order of 

magnitude of the boundary layer thicknesses calculated in this fashion 

is correct, even if the flow is complicated by turbulence. 

Physically the situation remains much the same when ionization 

occurs within the gas. We must then consider an additional diffusion 

mechanism, that of the diffusion of chemical species (i.e., ions, elec- 

trons, and neutral atoms) with the associated boundary layer. We do not 

expect the effects of this boundary layer on the performance of the gas 

gun to be appreciable, and it will be neglected. 

The usual definition of boundary layer thickness is in terms inde- 

pendent of the magnitude of the discontinuity causing the disturbance. 

For example, we might define the edge of the thermal boundary layer by 

requiring that the temperature in the boundary layer achieve 90% of the 

difference between the wall temperature and the free-stream temperature. 

Such a definition is independent of the magnitude of the difference. 

However, this type of definition is rather poor for comparing the effects 

of two different discontinuities on the flow pattern. 

A better definition for comparative purposes would be to define the 

edge of the boundary layer as a definite absolute disturbance, so that 

the boundary layer thickness vanishes when the discontinuity vanishes. 

As a consequence of this definition, the parameter c in Eq. 4.27 is a 

function of the strength of the discontinuity. It should be a monotonic 

function of the discontinuity, vanishing when the discontinuity vanishes. 

To obtain the correct functional form the exact boundary layer equations 

should be solved, but because of the difficulty of finding such a solu- 

tion, the function was arbitrarily chosen to be the square root of the 

strength of the discontinuity. Further study may improve this estimate, 

but the order of magnitude of the calculated boundary layer thickness 

should be correct. We therefore assume the thicknesses 8v and 6T of the 

viscous and thermal boundary layers to be given by 

(4.30) 

(4.311 
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Using the values of shock temperatures and velocities computed for 

the simplified gas gun, we may calculate typical values of the boundary 

layer thickness. The results of these calculations appear in Table 4.1. 

The ratio of bourldary Inyet thickness to driver tube radius is calculated 

for a standard experimental situation; the results are presented in 

Table 4.2. The standard configuration is taken to be a driver tube of 

0.3-cm radius, with 30 cm of shock-compressed gas behind the shock (a 

highly conservative estimate). 

Table 4.1 

BOIJNDARY LAYER TfIICKNESS 

(CGS UNITS) 

PISTON VELOCITY, 

uP 

INITIAL SHOCK REFLECTED SHOCK 

8,/J;- 6 T/J;- S”lJ;- 6 T/J; 

1.14 x 10-3 0 5.69 x 10-4 

1.30 x 10-3 0 6.41 x 1O-4 

1.42 x 10-3 0 6.14 x 10-4 

1.56 x 10-3 0 6.46 x 1O-4 

MAXIMUM RATIO OF BOUNDARY I.AYER THICKNESS TO DRIVER 

TUBE RADIUS FOR A STANDARD EXPEHIMENTAI. CONFIGURATION* 

PISTON VELOCITY. 

k 
INITIAL SHOCK 

I 
REFLECTED SHOCK 

uP 
(mm/psec 1 s v/R ST/R 6 u/R ST/R 

5 0.0228 0.0208 0 0.0104 

9 0.0258 0.0238 0 0.0117 

13 0.0284 0.0260 0 0.0112 
17 0.0309 0.0285 0 0.0118 

- 

’ 30-cm length of compressed gas behind the shock in a 0.3-cm-radius tube. 

We may also obtain a rough estimate of 

rate per unit area, qT, from the driver gas 

tube: 

T, - T. 
qT = k 

6T 

the laminar heat transfer 

to the walls of the driver 

(4.32) 
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The turbulent heat transfer rate may be appreciably higher than the 

laminar heat transfer, and ionization effects would further increase the 

effect. However, the inclusion of these complications is extremely 

difficult and it would be necessary to rely heavily on experimental data 

which are at present unavailable. Calculation of the laminar heat 

transfer rate should give a reasonable order of magnitude estimate of 

the effect, but the results must be treated with caution. 

Using the values for the thermodynamic state calculated for the 

simplified gas gun, the laminar heat transfer rate was calculated and is 

presented in Table 4.3. The initial rate of heat transfer is fairly 

high, but it falls off inversely as the square root of the distance from 

the shock front. 

Tablk 4.3 

LAMINAR HEAT TRANSFER RATE 
(CGS UNITS) 

PISTON VELOCITY, 

uP 

5 x 105 

9 x 105 

13 x 105 

17 x 105 

INITIAL SHOCK, 

¶J;- 

6.95 x lOlo 

3.98 x 1011 

1.02 x 1012 

1.48 x 101' 

REFLECTED SHOCK, 

v- 9 x 

5.65 x 1011 

2.76 x 1012 

5.40 x 1012 

8.26 x 1012 

I I 

In order to estimate the seriousness of the thermal power loss 

through the walls of the driver tube, the total power loss, Qr, was 

computed for the standard configuration mentioned above and compared to 

the rate of work, PIup, performed by the piston on the driver gas. The 

results are given in Table 4.4. We may conclude from these computations 

that the energy loss due to thermal conduction may safely be neglected. 

4.4 RADIATION EFFECTS 

Referring to Fig. 4.1 we see that temperatures to be expected in 

the incident and reflected shocks in a helium gas gun with piston 

velocities of 5 to 15 km/set range from 5000 to 45,000bK. In order to 

estimate the importance of radiative heat transfer at these temperatures 
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let us compute the blackbody heat transfer rate per unit area, qR, 

defined in terms of the absolute temperature, T, and the Stefan-Boltzmann 

constant, tr: 

QR = G-T4 (4.33) 

The results of this calculation, based on the temperatures calculated 

for the simplified gas gun, are shown in Table 4.5. 

Table 4.4 

MAXIMUM RATIO OF POWER LOST BY THERMAL 

CONDUCTION TO POWER SUPPLIED BY PISTON 

FOR A STANDARD EXPERIMENTAL CONFIGURATION* 

PISTON VELOCITY, INITIAL SHOCK, REFLECTED SHOCK, 
up (mm/Ksec) QT’PIUp QT'p2uP 

5 0.0090 0.0131 

9 0.0238 0.0183 

13 0.0206 0.0192 

17 0.0185 0.0158 

l 
30-cm length of compressed gea behind the ahock in a 0.3~cm-radius tube. 

Table 4.5 

BLACKBODY RADIATIVE HEAT TRANSFER RATE 

(CGS UNITS) 

PISTON VELOCITY, 

uP 

5 x 105 

9 x 105 

13 x 105 

17 x 105 

INITIAL SHOCK, 
9R 

2.27 x lOlo 

1.85 x 1O1' 

2.1 x 1013 

6.3 x 1013 

REFLECTED SHOCK, 
9R 

6.2 x 1011 

3.41 x 1013 

1.76 x 1014 

5.78 x lOI 

Let us assume as a first estimate that the emissivity of the helium 

is 1, so that the gas radiates like a blackbody. We may then compute the 

total rate of radiant heat loss, QR, for the standard configuration and 

compare it with the rate at which the piston does work against the driver 

gas, PIup. The results of this computation are shown in Table 4.6. 

Evidently a significant fraction of the driver energy may be lost through 

the tube walls for a piston velocity of 9-km/set or more; in this case, 
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therefore, a more rigorous and accurate treatment of radiation losses 

should be included in performance calculations for the actual gas gun. 

Table 4.6 

MAXIMUM RATIO OF POWER LOST BY THERMAL RADIATION 

TO POWER SUPPLIED BY PISTON FOR A 

STANDARD EXPERIMENTAL CONFIGURATION* 

PISTON VELOCITY, INITIAL SHOCK. REFLECTED SHOCK, 

up (mm/Psec) 

5 0.00806 0.0394 

9 0.116 0.379 

13 0.461 0.660 

17 0.631 0.889 

* 
30-cm length of compressed gas behind the shock in a 0.3-cm-radius tube; 
helium emissivity assumed to be unity. 

4.5 FLOW COMPUTATIONS 

A new computer technique was developed during this project for the 

purpose of integrating the equations of unsteady hydrodynamic flow. 

Several techniques are already available for these computations (e.g., the 

von Neumann-Richtmyer method,12 the Lax stagger scheme,13 the Lax-Wendroff 

technique14), but several problems are encountered in applying them 

directly to the explosive driver computations. 

The principal difficulty is the problem of introducing the proper 

thermodynam,ic description of the gas into the flow calculations. The 

von Neumann-Richtmyer schemeI requires an iteration between the thermo- 

dynamic specification of the material and the equations of motion, 

leading to an indeterminate number of calculations at each cell. Since 

it was expected that the time spent in thermodynamic computations would 

be appreciable, other techniques were investigated. 

The Lax-Wendroff method14 appeared to be the most appropriate for 

these calculations; not only is it completely explicit in its method of 

computation, but it also is several times faster than the von Neumann 

method. There is, however, a serious practical difficulty in that the 

Lax-Wendroff method requires the knowledge not only of the equation of 

state but also of the associated partial derivatives. As these are 
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generally difficult to obtain numerically, some thought was given to an 

extension or modification of the scheme. 

The result of these investigations proved to be surprisingly simple 

conceptually. Rather than going into the development of the ideas which 

led up to the present state of the method, we shall describe as concisely 

as possible the technique as it is now used. 

The first step is to write the equations of motion in a vector form: 

aT;, - a;, -t 
at= 

T -+ G’ a, 

where the matrix 7 and the vectors F and G are nonlinear functions of 

t r, and t (if irreversible effects are included F is also a function 

of a$ad. 

As an example of the equations of motion written in this form we 

may consider the equations actually used in the project: 

ax -= u 
at 

au A(x) a(, + q) 

at = - m(r) a, 

au 1 a(Au 1 - = -~ 
at m(r) at- 

& (P + 4) aAd kT4 -= - ~ - 
at m(r) a, pm 

The vector c-is given by (n, u, u, e); the functions 7, F, - and G are 

obtained by inspection of the equations of motion. The cross-sectional 

area A(x) is presumed known, as is the equation of state p(p, e).* The 

Lagrangian mass density m(r) is computed from the initial state: 

* 
p = l/v. 

I 

m(r) = p*$ 
r t= 0 
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An artificial viscosity introduced by von Neumann12has been included 

to smooth shock discontinuities; it is defined by 

q = wpg -n(g) 

where p, a dimensionless variable, is chosen for the best results (p = 2 

has proved satisfactory). 

Having defined the independent variables V and the corresponding 

functions 7, ;3, and z', we may now proceed to the method of calculation. 

Suppose V is known at some time t = nAt at the points r = jar. We may 

then calculate the corresponding values of c;',;, - and C: 

where 

;,i”+ 1 - ii;: 1 

2Ar 

and so forth. 

Having calculated these quantities we are now able to step forward 

in time. It is here that questions of stability arise, for not all 

methods of forward time-stepping are successful. Two basic principles 

may be invoked here to eliminate fruitless methods. The first principle 

is that a computed point must lie within the characteristic domain of 

dependence of the points on which the computation depends. The second 

basic principle is that a first order differential should be replaced 

where possible by a first order difference. The stagger scheme proposed 

by Lax13 in 1954 for a special choice of the equations of motion satis; 

fies both of these fundamental considerations, and we shall use it to 

step forward in time. 
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Let us first, however, consider an old and well-known method of 

integration familiar from ordinary differential equations. We put: 

dy 

dt 
= F(y,t) . 

The simplest method for stepping forward in time would be to put: 

Y 
n+ 1 = y” + AtF(y”, t”) = Y” + AtFn ’ 

but this is accurate only to first order in At, as we can easily see by 

expanding y(t) in a Taylor series. Hence only terms up to the first 

order in At agree. A second order accuracy is easily obtained by the 

following method: 

n+1 = 
Y” 

+ Atf- At At 
Y 

+ ?F”, t + 2 = yn + AtF”+ ?4 

This method is one of a general class of similar techniques known 

as Runge-Kutta techniques.E Exactly the same principle may be used with 

the stagger scheme to achieve second order accuracy in the continuum 

calculations. 

We set: 

Having obtained these “halfway" values ;';I;, 

corresponding functions 3, g', 

we may calculate the 

and cti These values, now properly centered 

in r and t, are used to step -6 forward a full time step: 

wn+?4 
-n+ 1 
uj = ii; + At 

+ T. 1 1-x 
2 )I 

. 

A simple Taylor series expansion indicates that the accuracy is of the 

second order in both &-and At. 
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The principal advantage of this scheme is that stability and 

accuracy are obtained without ever requiring more than the explicit 
t--t-+ 

calculation of the functions T , F's and z'in terms of known values of i'. 

Hence no iterations are necessary nor are thermodynamic derivatives ever 

required. 

In addition, the method is superior to a similar method mentioned 

by Richtmyer16 in that the choice of the vector variable U'is arbitrary 

and need not be confined to the Lax conservation variables. This advan- 

tage is particularly important from a practical standpoint. The Lax 

conservation variables, although they lead to a convergent scheme and 

are fairly useful in some applications, are an extremely bad choice when 

the quasi-l inear equations in a tube of varying cross sections are to be 

solved. Use of the Lax conservation variables leads to an anomalous 

situation in which gas at rest is accelerated in a region of varying 

cross section. This anomalous acceleration decreases as the square of 

the cell size, but useful results are not obtained without an excessive 

number of cells and an enormous increase in computation time. 

The variables chosen for the calculations in this project are the 

position, velocity, density, and internal energy of a gas cell-the 

variables used in the popular von Neumann-Richtmyer technique. In fact, 

the method described above has many of the characteristics of the 

von Neumann-Richtmyer scheme. It would be interesting, to make a 

detailed comparison of the two methods. 

Th e program that was written using the method described above has 

been used extensively to define useful operating regimes for the explo- 

sive gas gun and to test various concepts concerning the optimal 

characteristics of the explosive driver. Some of the results of these 

calculations are presented as “numerical experiments" in the experimental 

section of this report. 

The convergence and stability of the method have been tested 

numerically, and accord very closely with theoretical predictions. In 

addition, numerical tests have been run in several cases in which the 

exact solutions are known, and no unusual behavior has been noted. 
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4.6 JET CALCULATIONS 

The helium shock velocities observed in much of the work during the 

first year of this study were significantly higher than one would expect 

on the basis of a piston moving at detonation velocity. Typically, a 

nitromethane driver produces a shock of 9.5 to 10 mm/psec velocity, 

which should require a piston moving at least 7.1 mm/psec, well above 

the 6.3 mm/psec detonation velocity of nitromethane. This high velocity 

suggests that, although a compact jet has never been observed in the 

coaxial glass design, some sort of a diffuse cloud of material may be 

pushed out ahead of the detonation front so as to give performance better 

than that expected. During the current year some theoretical effort was 

expended to see if the characteristics of this diffuse jet could be 

predicted so that a design which would maximize its mass could be 

determined. 

4.6.1 IMPLOSION VELOCITY PREDICTION 

R. W. Gurney l7 has predicted with surprising accuracy the velocity 

of fragments produced by the detonation of a charge of explosive sur- 

rounded by a shell of metal. His method consists essentially of assuming 

a flow field for the detonation gases and applying the conservation laws. 

T. E. Sterne 18extended the technique to a number of related cases and 

compared the results with a more accurate computation based on perfect 

gas dynamics. The results of the comparison indicate that the simple 

Gurney approach remains within a few percent of the more accurate 

approach over a fairly wide range of variables. 

-To calculate the velocity imparted to the inner wall of a cylinder 

by a concentric cylinder of high explosive we can use essentially the 

same technique. Assuming constant density in the explosive, a velocity 

varying linearly with the radius, negligible confinement on the outside 

of the explosive, and a liner thickness small compared with its radius, 

we arrive at an expression of the same form as the Gurney formula for 

flat plate acceleration: 

where E is specific energy of the explosive, c is the mass per unit length 

of the charge, and m is the mass per unit length of the liner. 
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The values of R, S, and T depend only on the ratio of outside to 

inside diameter and have been calculated for values of this ratio from 

1 to 50. These values are shown in Fig. 4.8. 
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FIG. 4.8 COEFFICIENTS FOR THE GURNEY EQUATION FOR IMPLODING 
COAXIAL CYLINDERS 

4.6.2 JETTING 

If we follow Birkhoff's analysislgassuming hydrodynamic flow during 

the collapse process and negligible density change, it can be shown that 

the situation in Fig. 4.9 obtains when the process is viewed in a coordi- 

nate system moving with the detonation front. The mass in the jet under 

these circumstances is determined by the requirement of conservation of 

momentum. After the wall is turned and accelerated inward by the deto- 

nation front, there is an increase in the rightward-going axial momentum 

given by 

P = au 2/2D 
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FIG. 4.9 JETTING PROCESS IN COORDINATES 
MOVING WITH DETONATION FRONT 

where m is the wall mass per unit length and v is the inward-going 

radial component of the wall velocity. We now transfer to laboratory 

coordinates, in which the jet velocity is 20. After collapse this axial 

momentum manifests itself in the jet mass, mj moving to the right. 

Thus: 

2Dmj = mv2/2D 

*i V2 
= 

m 40' 

Substituting the Gurney expression for the wall velocity we obtain: 

83 



A typical Comp B shot fired during this project has a c/m of 10 and 

a diameter ratio of 3. Taking a value of 2.7 mm/psec for JZ for 

Comp B, we would expect an implosion velocity of 4.34 mm/psec and a 

mj/m of 0.075. The implosion velocities actually observed by the X-ray 

unit for such shots range from 2.8 to 3.4 mm/psec. This is the closest 

agreement between theory and experiment that has been observed on this 

project. Nitromethane shots, in particular, show a much lower implosion 

velocity than that predicted by theory, for reasons which are not now 

known. The mj/m predicted for the theoretical collapse velocity of 

4.34 mm/,usec is 0.075, and since the liner mass per unit length is about 

1.0 g/cm, the jet mass per unit length should be 0.075 g/cm. 

If the jet is spread out over the whole 11-mm tube diameter, the 

glass density will be 0.079 g/cm.3 Since this is only about six times 

the shocked helium density, and the jet in the real case will probably 

give an even lower density, it does not seem likely that the glass cloud 

can be described as a rigid piston. It may give a temporarily higher 

shock velocity during the early stages of an experiment, but after that 

the only effect will probably be to change the details of later shock 

reflections from the piston. It seems reasonable to treat the tube 

collapse at the detonation front as the piston and to ignore the glass 

jet except for such second order effects. For this reason no further 

effort to optimize this aspect of the design was carried out. 
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SECTION 5 

SUMMARY AND RECOMMENDATIONS 

5.1 SUMMARY 

The work reported here has experimentally demonstrated the operation 

of all the important parts of a high-performance, explosively driven 

launcher, including: 

1. Acceleration of projectiles by shock pressures in the 
5 to 10 kbar range through steel launch tubes 
(Section 2.2.2). 

2. Transition, if necessary, to glass launch tubes and con- 
tinued acceleration through them (Section 2.2.4). 

3. Achievement of detonation phase velocities at least 
twice the normal detonation velocity (Section 2.5.2). 

4. Computer design of a gun incorporating these parts which 
is theoretically capable of projectile velocities of 
12 mm/psec after 150 cm of acceleration (Section 3.5). 

The theoretical understanding of the high performance explosively 

driven launcher has advanced significantly. The theoretical studies have 

been concerned with all phases of launcher operation, and include: 

1 * A study of the effect of nonideal gas behavior on the 
operation of the launcher and the inclusion of these 
effects in flow computations (Sections 4.1 and 4.2). 

2., A study of the boundary layer effects on the operation 
of the launcher (Section 4.3). 

3. A study of radiation loss from the shock-heated driver 
gas and the effects of this loss on launcher operation 
(Section 4.4). 

4. A new method for numerically integrating the equations 
of motion of a compressible gas which can include 
radiative losses, an arbitrary thermodynamic equation 
of .state, and an area change in the launch tube 
(Section 4.5). 
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5. A theoretical study of the implosion process, including 
the prediction of implosion velocities and jet mass 
(Section 4.6). 

Fair agreement between theoretical and experimental performance has 

been shown. This agreement makes it reasonable to perform experiments 

with the computer, and the availability of the fast computer code has 

made this an economically attractive way to operate (the run resulting 

in Fig. 3.4, for example, cost less than $15.00). 

In addition to the demonstration of the essentials of a gun, much 

theoretical and experimental work has been done on the refinements which 

will be required for a design approaching optimum. These include: 

1. Low-velocity explosive development, which has progressed 
through preliminary stages. At present, velocities below 
the 6.3 mm/psec of nitromethane are not readily available, 
but a small amount of additional work should provide 
velocities at least as low as 4 mm/psec. 

2. Multiple shock systems to provide more uniform accelera- 
tion have been studied by computer and have been shown 

.to be feasible. Inclusion in a realistic gun design will 
require additional computer runs. 

3. Methods for programming the piston motion, to make possible 
the required reductions in gas mass, have been investigated 
and a promising system has been found. 

4. A constant acceleration piston design has been developed 
which appears reasonably easy to construct. 

5.2 RECOMMENDATIONS FOR FUTURE WORK 

With much of the basic work accomplished,the next objective should 

be to achieve the really high velocities predicted by computer runs such 

as that shown, in Fig. 3.4. This design can be constructed in various 

ways. The primary driver can be glass or thin-walled steel; the heavy- 

walled tube can be thick-walled steel tubing, reinforced thin-wall steel 

tubing, or reinforced precision-bore glass tubing; and the secondary 

driver can be either thin-walled steel or precision-bore glass. The com- 
bination glass - thick-walled steel - glass design is the one which has 

been most studied here andgives the greatest freedom for explosive loading 
since significant jets are not formed. If the joint in the launch tube 

is objectionable, the glass could extend the full length of the launcher 
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and be surrounded by massive confinement for the first portion. To give 

the glass even more resistance to internal pressures in this region, it 

might be possible to cause the confinement to prestress the glass. 

Only when a gun has been made to operate at velocities above 

10 mm/psec should additional work on optimization be attempted. Such 

work would include low-velocity explosive development, calculations on 

multiple shock designs and designs to reduce the required gas mass, and 

construction of a constant acceleration piston. 
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APPENDIX A 

cALcu~~~ro~s PERFORMED FOR THE NASA-AMES 4u~~ 
DEFORMABLE-PISTON LIGHT GAS GUN 
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APPENDIX A 

CALCULATIONS PERFORMED FOR TBE NASA-AMES 4"-1" 
DEFORMABLE-PISTON LIGHT GAS GUN 

During the course of this project it was noted that the computer 

code developed for predicting the performance of the explosively driven 

gas gun was equally capable of predicting the performance of the various 

light gas guns at the Hypervelocity Free Flight Facility at NASA-Ames. 

At the request of the project monitor the program was modified suffi- 

ciently to make these performance calculations in a number of test cases. 

A simplified sketch of the Ames 4”-1” light gas gun is shown in 

Fig. A.l. Gunpowder is loaded in the pressure chamber and ignited, thus 

building up sufficient pressure to propel a polyethylene piston down the 

first stage of the gun. The piston compresses the hydrogen-driven gas 

in a nearly adiabatic fashion, building up to a pressure of approximately 

138 bars (20,000 psi) by the time the piston reaches the convergent 

sectiou of the tube. At this point the diaphragm ruptures and the 

projectile begins to accelerate. 

I- - 2460.7 cm -+-50.2cm+ 732cm w 

T 
,, InIT- inwrm I 
f - “YL-“’ 2.54cm 

PRESSURE DIAPHRAGM 
CHAMBER DENSITY=0.95 g/cm 

FIG. A.1 SCHEMATIC DIAGRAM AND PERTINENT DIMENSIONS OF THE NASA- 
AMES 4” - 1” DEFORMABLE-PISTON LIGHT GAS GUN 

As the gas pressure begins to drop behind the accelerating pro- 

jectile, the piston enters the constriction and begins to deform 

plastically. As a consequence the front surface of the piston accel- 

erates and a compression wave is propagated into the driver gas. This 
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compression wave tends to counteract the decrease in pressure behind the 

accelerating projectile, and thus tends to extend the time during which 

the maximum sustainable acceleration is applied to the projectile. The 

timing and physical configuration of the device must be carefully chosen 

to provide this augmentation of base pressure over a significant time 

and yet to avoid a destructive overpressure. 

Th ' ' e prrnclpal modifications necessary to adapt the computer code 

developed during this project to perform calculations of the Ames gun 

were: (1) to include the equations of motion of a plastically deforming 

piston; (2) to include a diaphragm. The latter inclusion is trivial, 

but the first took considerable study and experimentation before it was 

perfected. In addition, it was found while running the Ames gas gun 

cases that the equations of motion originally chosen led to a particularly 

inefficient calculation when area changes were great, as in the Ames gun. 

The equations of motion were rewritten using a different set of variables 

and this problem was removed. 

The description of the motion of the deformable piston as it flows 

into the convergent section of the gas gun closely resembles the clas- 

sical theory of wire drawing and wire extrusion.* We assume that: 

(1) the axial, radial, and hoop stresses are the principal stresses; 

(2) the radial stress is equal to the hoop stress; and (3) these stresses 

are functions of x only. We assume further that: (4) the piston is a 

perfectly plastic body with a yield stress in pure shear of k,; (5) the 

wall friction stress on the piston is shear stress limited to this same 

value k,; (6) the piston is in a state of plastic yield as it flows 

through the constriction; and (7) the piston is incompressible. 

All these assumptions are typical of the theory of extruding wires. 

Probably the worst assumption in the case of a polyethylene piston 

converging into the constriction in the gun is that the piston behaves 

like a classical plastic body; one would in fact expect that rate- 

dependent stresses might be significant in polyethylene and in addition 

that the plastic yield strength k, might depend upon the state of the 

material. 

* For example. see A. Phillips, Introduction to Plasticity, The Ronald Press Company, 
New York, 1956. pp. 149-152. 
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From the assumptions on the distribution of stress it follows t,hat 

70’ the octahedral shearing stress, becomes 

A- 
r. = 3(u* - p) 

But since the material is in a state of collapse we have 7. 

where the sign opposes that of &/ax, and we have 

&I 
sgn - ( )I a, 

(A. 1) 

= *k 
P’ 

(A.21 

The equations of motion for a differential section of the piston 

(see Fig. A.21 are readily written in Lagrangian coordinates. The 

normal force at the tube wall acting on the piston is the pressure p; 
the tangential force is given by the shear stress limited friction kp. 

FRICTION 

QA-,,I’-.. 

FIG. A.2 PISTON DEFORMATION PROCESS ’ 

The' resulting momentum equation for a differential slab of material is: 

au m(r)- = 
at 

$ (uZA) + p$ - t-a $ 

where 

m(r) = PAS 
r=o 

(A.31 

(A.41 
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is the density of the piston in Lagrangian coordinates. Assuming that 

sgn (au/&) = +l in all cases of interest, Eq. A.3 can be simplified to 

read: 

au 
m(r)% = -A$ (p +$) - (2 + t-a)$ (A.51 

The equations of motion of the deforming piston may be exactly 

calculated by a recently developed technique.* Since the piston is 

incompressible the mass fl ow must depend on time alone, so that we have 

POUA = f(t) (‘4.6) 

Differentiating this expression we obtain 

df au aA 

t 
= p,,Ax + Po’,t 

But it can easily be shown that 

aA f(t) a4 -= - - 
at m(r) ar 

so that 

df f2(t) aA 

dt 
= poA$- - 

Am(r) ar 

Rearranging terms, we obtain 

au 
m(r) - = 

1 df f2s 
at PO A 

- m(r) z - 
A ar 

(A.71 

(A.81 

(A.91 

(A. 10) 

* 
M. Cloutier and D. P. Flemming, Canadian Armament Research and Development Establishment, 
private communication, 14 May 1965. 
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Substituting this expression into the momentum equation (Eq. A.51 and 

simplifying, we obtain: 

aA 

(A.111 

Integrating from one end of the piston to the other, and noting that the 

axial stress is prescribed at both ends to be the pressure acting on the 

piston, we obtain: 

Ps-P1 = - _ $i,’ $ _ $‘A;2 - ,4;2) 
0 

(A.12) 

Here we indicate the forward surface of the piston by the subscript 2, 

and the rear surface by the subscript 1. We have used Eq. A.4 to 

rearrange the integrals into the form shown. 

From Eq. A.12 we obtain a differential equation for the mass flow, 

f(t). It should be noted that this relation is an exact integral of 

the equations of motion at an instant of time and obtains for us the 

detailed motion of the piston in terms of the boundary conditions 

alone. We have 
1 
I 

I df A2 

dt )O 

f2(t)(A-2 _ A-2) In- -- 
Al w, 2 1 (A.131 

where 

I(x) = JXZ12 -& (A.14) 

.After numerically obtaining a solution for the mass flux f(t), we can 

then obtain detailed knowledge of the state of the piston. For instance, 

the velocity at any section is given by 

u(x, t) = 
f(t) 

p,A(d 
(A. 15) 
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A short subroutine which calculates the motion of the deforming 

piston has been written and used successfully to perform calculations 

for the Ames gas gun. The first set of calculations was performed with 

k The 
P 

= 0, that is, the piston was assumed to be a perfect fluid. 

pressures obtained at the base of the projectile for this case were 

greatly excessive, much more than the estimated base pressures in the 

real gun. When a value of 0.94 kbar was chosen for kp (an approximate 

handbook value for polyethylene), the base pressures were quite reason- 

able and the resulting projectile motion was in fair qualitative 

agreement with the real gun. The final velocity was, however, about 

23% higher than the experimental value. 

Several modifications to the program were attempted to find the 

cause of this velocity discrepancy, but they have not been successful. 

As a first step the value of k p was changed approximately 25%. This had 

no appreciable effect on the final velocity. Next, a friction coeffi- 

cient of 0.1 was included in the equations of motion of the projectile, 

but this again made little difference to the final velocity. 

Additional work is necessary before the results of this numerical 

code can be compared with experiment. Some of the more important 

questions which should be looked into are: (1) the effect of heat 

losses from the gas into the tube walls; (2) the effect of rate- 

dependent plastic stresses; (3) a detailed comparison of the predicted 

piston and projectile motions with experimental data. 
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